Questions — CAIE (7659 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE Further Paper 4 2021 November Q4
4 Manet has developed a new training course to help athletes improve their time taken to run 800 m . Manet claims that his course will decrease an athlete's time by more than 2 s on average. For a random sample of 10 athletes the times taken, in seconds, before and after the course are given in the following table.
Athlete\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)\(H\)\(I\)\(J\)
Before150146131135126142130129137134
After145138129135122135132128127137
Use a \(t\)-test, at the \(5 \%\) significance level, to test whether Manet's claim is justified, stating any assumption that you make.
CAIE Further Paper 4 2021 November Q5
5 Nine balls labelled \(1,2,3,4,5,6,7,8,9\) are placed in a bag. Kai selects three balls at random from the bag, without replacement. The random variable \(X\) is the number of balls selected by Kai that are labelled with a multiple of 3 .
  1. Find the probability generating function \(\mathrm { G } _ { \mathrm { X } } ( \mathrm { t } )\) of \(X\).
    The balls are replaced in the bag.
    Jacob now selects two balls at random from the bag, without replacement. The random variable \(Y\) is the number of balls selected by Jacob that are labelled with an even number.
  2. Find the probability generating function \(\mathrm { G } _ { Y } ( \mathrm { t } )\) of \(Y\).
    The random variable \(Z\) is the sum of the number of balls that are labelled with a multiple of 3 selected by Kai and the number of balls that are labelled with an even number selected by Jacob.
  3. Find the probability generating function of \(Z\), expressing your answer as a polynomial.
  4. Use the probability generating function of \(Z\) to find \(\mathrm { E } ( Z )\).
CAIE Further Paper 4 2021 November Q6
6 The blood cholesterol levels, measured in suitable units, of a random sample of 11 women and a random sample of 12 men are shown below.
Women51552421671522567513798238235
Men3112621703021753202202607235186333
Carry out a Wilcoxon rank-sum test, at the \(5 \%\) significance level, to test whether, on average, there is a difference in cholesterol levels between women and men.
If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 4 2022 November Q1
1 Jasmine is researching the heights of pine trees in forests in two regions \(A\) and \(B\). She chooses a random sample of 50 pine trees in region \(A\) and records their heights, \(x \mathrm {~m}\). She also chooses a random sample of 60 pine trees in region \(B\) and records their heights, \(y \mathrm {~m}\). Her results are summarised as follows. $$\sum x = 1625 \quad \sum x ^ { 2 } = 53200 \quad \sum y = 1854 \quad \sum y ^ { 2 } = 57900$$ Find a \(95 \%\) confidence interval for the difference between the population mean heights of pine trees in regions \(A\) and \(B\).
CAIE Further Paper 4 2022 November Q2
2 An organisation runs courses to train students to become engineers. These students are taught in groups of 8 . The director of the organisation claims that on average \(60 \%\) of the students in a group achieve a pass. A random sample of 150 groups of 8 students is chosen. The following table shows the observed frequencies together with some of the expected frequencies using the appropriate binomial distribution.
Number of passes per group012345678
Observed frequency00824453626101
Expected frequency\(p\)1.1806.19318.57934.836\(q\)\(r\)13.4372.519
  1. Find the values of \(p , q\) and \(r\) giving your answers correct to 3 decimal places.
  2. Carry out a goodness of fit test, at the \(10 \%\) significance level, to test whether there is evidence to reject the director's claim.
CAIE Further Paper 4 2022 November Q3
3 A large college is holding a piano competition. Each student has played a particular piece of music and two judges have each awarded a mark out of 80 . The marks awarded to a random sample of 14 students are shown in the following table.
Student\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)\(H\)\(I\)\(J\)\(K\)\(L\)\(M\)\(N\)
Judge 17954637469525057554263555648
Judge 27562607376413151455549506536
  1. One of the students claims that on average Judge 1 is awarding higher marks than Judge 2. Carry out a Wilcoxon matched-pairs signed-rank test at the 5\% significance level to test whether the data supports the student's claim.
  2. Give a reason why it is preferable to use a Wilcoxon matched-pairs signed-rank test in this situation rather than a paired sample \(t\)-test.
CAIE Further Paper 4 2022 November Q4
4 Jason has three biased coins. For each coin the probability of obtaining a head when it is thrown is \(\frac { 2 } { 3 }\). Jason throws all three coins. The number of heads obtained is denoted by \(X\).
  1. Find the probability generating function \(\mathrm { G } _ { \mathrm { X } } ( \mathrm { t } )\) of \(X\).
    Jason also has two unbiased coins. He throws all five coins. The number of heads obtained from the two unbiased coins is denoted by \(Y\). It is given that \(G _ { Y } ( t ) = \frac { 1 } { 4 } + \frac { 1 } { 2 } t + \frac { 1 } { 4 } t ^ { 2 }\). The random variable \(Z\) is the total number of heads obtained when Jason throws all five coins.
  2. Find the probability generating function of \(Z\), expressing your answer as a polynomial.
  3. Find \(\mathrm { E } ( \mathrm { Z } )\).
CAIE Further Paper 4 2022 November Q5
5 The continuous random variable \(X\) has cumulative distribution function F given by $$F ( x ) = \begin{cases} 0 & x < 0 \\ 1 - \frac { 1 } { 144 } ( 12 - x ) ^ { 2 } & 0 \leqslant x \leqslant 12 \\ 1 & x > 12 \end{cases}$$
  1. Find the upper quartile of \(X\).
  2. Find \(\operatorname { Var } \left( X ^ { 2 } \right)\).
    The random variable \(Y\) is given by \(Y = \sqrt { X }\).
  3. Find the probability density function of \(Y\).
CAIE Further Paper 4 2022 November Q6
6 A company manufactures copper pipes. The pipes are produced by two different machines, \(A\) and \(B\). An inspector claims that the mean diameter of the pipes produced by machine \(A\) is greater than the mean diameter of the pipes produced by machine \(B\). He takes a random sample of 12 pipes produced by machine \(A\) and measures their diameters, \(x \mathrm {~cm}\). His results are summarised as follows. $$\sum x = 6.24 \quad \sum x ^ { 2 } = 3.26$$ He also takes a random sample of 10 pipes produced by machine \(B\) and measures their diameters in cm. His results are as follows. $$\begin{array} { l l l l l l l l l l } 0.48 & 0.53 & 0.47 & 0.54 & 0.54 & 0.55 & 0.46 & 0.55 & 0.50 & 0.48 \end{array}$$ The diameters of the pipes produced by each machine are assumed to be normally distributed with equal population variances. Test at the \(2.5 \%\) significance level whether the data supports the inspector's claim.
If you use the following page to complete the answer to any question, the question number must be clearly shown.