| Exam Board | CAIE |
|---|---|
| Module | Further Paper 4 (Further Paper 4) |
| Year | 2022 |
| Session | November |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Continuous Probability Distributions and Random Variables |
5 The continuous random variable $X$ has cumulative distribution function F given by
$$F ( x ) = \begin{cases} 0 & x < 0 \\ 1 - \frac { 1 } { 144 } ( 12 - x ) ^ { 2 } & 0 \leqslant x \leqslant 12 \\ 1 & x > 12 \end{cases}$$
(a) Find the upper quartile of $X$.\\
(b) Find $\operatorname { Var } \left( X ^ { 2 } \right)$.\\
The random variable $Y$ is given by $Y = \sqrt { X }$.\\
(c) Find the probability density function of $Y$.\\
\hfill \mbox{\textit{CAIE Further Paper 4 2022 Q5}}