Questions — CAIE (7659 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE M2 2007 June Q2
5 marks Standard +0.8
2 A particle starts from rest at \(O\) and travels in a straight line. Its acceleration is \(( 3 - 2 x ) \mathrm { ms } ^ { - 2 }\), where \(x \mathrm {~m}\) is the displacement of the particle from \(O\).
  1. Find the value of \(x\) for which the velocity of the particle reaches its maximum value.
  2. Find this maximum velocity.
CAIE M2 2007 June Q3
6 marks Standard +0.3
3 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{57f7ca89-f028-447a-9ac9-55f931201e6b-2_561_597_1585_406} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{57f7ca89-f028-447a-9ac9-55f931201e6b-2_447_387_1726_1354} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} A hollow container consists of a smooth circular cylinder of radius 0.5 m , and a smooth hollow cone of semi-vertical angle \(65 ^ { \circ }\) and radius 0.5 m . The container is fixed with its axis vertical and with the cone below the cylinder. A steel ball of weight 1 N moves with constant speed \(2.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in a horizontal circle inside the container. The ball is in contact with both the cylinder and the cone (see Fig. 1). Fig. 2 shows the forces acting on the ball, i.e. its weight and the forces of magnitudes \(R \mathrm {~N}\) and \(S \mathrm {~N}\) exerted by the container at the points of contact. Given that the radius of the ball is negligible compared with the radius of the cylinder, find \(R\) and \(S\).
CAIE M2 2007 June Q4
7 marks Challenging +1.2
4 \includegraphics[max width=\textwidth, alt={}, center]{57f7ca89-f028-447a-9ac9-55f931201e6b-3_777_447_267_849} A uniform triangular lamina \(A B C\) is right-angled at \(B\) and has sides \(A B = 0.6 \mathrm {~m}\) and \(B C = 0.8 \mathrm {~m}\). The mass of the lamina is 4 kg . One end of a light inextensible rope is attached to the lamina at \(C\). The other end of the rope is attached to a fixed point \(D\) on a vertical wall. The lamina is in equilibrium with \(A\) in contact with the wall at a point vertically below \(D\). The lamina is in a vertical plane perpendicular to the wall, and \(A B\) is horizontal. The rope is taut and at right angles to \(A C\) (see diagram). Find
  1. the tension in the rope,
  2. the horizontal and vertical components of the force exerted at \(A\) on the lamina by the wall.
CAIE M2 2007 June Q5
8 marks Standard +0.3
5 One end of a light elastic string, of natural length 0.5 m and modulus of elasticity 140 N , is attached to a fixed point \(O\). A particle of mass 0.8 kg is attached to the other end of the string. The particle is released from rest at \(O\). By considering the energy of the system, find
  1. the speed of the particle when the extension of the string is 0.1 m ,
  2. the extension of the string when the particle is at its lowest point.
CAIE M2 2007 June Q6
9 marks Standard +0.3
6 \includegraphics[max width=\textwidth, alt={}, center]{57f7ca89-f028-447a-9ac9-55f931201e6b-3_83_771_1978_689} \(A\) and \(B\) are fixed points on a smooth horizontal table. The distance \(A B\) is 2.5 m . An elastic string of natural length 0.6 m and modulus of elasticity 24 N has one end attached to the table at \(A\), and the other end attached to a particle \(P\) of mass 0.95 kg . Another elastic string of natural length 0.9 m and modulus of elasticity 18 N has one end attached to the table at \(B\), and the other end attached to \(P\). The particle \(P\) is held at rest at the mid-point of \(A B\) (see diagram).
  1. Find the tensions in the strings. The particle is released from rest.
  2. Find the acceleration of \(P\) immediately after its release.
  3. \(P\) reaches its maximum speed at the point \(C\). Find the distance \(A C\).
CAIE M2 2007 June Q7
11 marks Standard +0.3
7 A particle is projected with speed \(65 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) from a point on horizontal ground, in a direction making an angle of \(\alpha ^ { \circ }\) above the horizontal. The particle reaches the ground again after 12 s . Find
  1. the value of \(\alpha\),
  2. the greatest height reached by the particle,
  3. the length of time for which the direction of motion of the particle is between \(20 ^ { \circ }\) above the horizontal and \(20 ^ { \circ }\) below the horizontal,
  4. the horizontal distance travelled by the particle in the time found in part (iii).
CAIE M2 2008 June Q1
3 marks Standard +0.3
1 \includegraphics[max width=\textwidth, alt={}, center]{36259e2a-aa9b-4655-b0c2-891f96c3f5a4-2_549_775_269_685} A particle \(A\) and a block \(B\) are attached to opposite ends of a light elastic string of natural length 2 m and modulus of elasticity 6 N . The block is at rest on a rough horizontal table. The string passes over a small smooth pulley \(P\) at the edge of the table, with the part \(B P\) of the string horizontal and of length 1.2 m . The frictional force acting on \(B\) is 1.5 N and the system is in equilibrium (see diagram). Find the distance \(P A\).
CAIE M2 2008 June Q2
5 marks Standard +0.8
2 \includegraphics[max width=\textwidth, alt={}, center]{36259e2a-aa9b-4655-b0c2-891f96c3f5a4-2_686_495_1238_826} A uniform rigid wire \(A B\) is in the form of a circular arc of radius 1.5 m with centre \(O\). The angle \(A O B\) is a right angle. The wire is in equilibrium, freely suspended from the end \(A\). The chord \(A B\) makes an angle of \(\theta ^ { \circ }\) with the vertical (see diagram).
  1. Show that the distance of the centre of mass of the arc from \(O\) is 1.35 m , correct to 3 significant figures.
  2. Find the value of \(\theta\).
CAIE M2 2008 June Q3
6 marks Standard +0.3
3 \includegraphics[max width=\textwidth, alt={}, center]{36259e2a-aa9b-4655-b0c2-891f96c3f5a4-3_637_572_264_788} One end of a light inextensible string is attached to a point \(C\). The other end is attached to a point \(D\), which is 1.1 m vertically below \(C\). A small smooth ring \(R\), of mass 0.2 kg , is threaded on the string and moves with constant speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in a horizontal circle, with centre at \(O\) and radius 1.2 m , where \(O\) is 0.5 m vertically below \(D\) (see diagram).
  1. Show that the tension in the string is 1.69 N , correct to 3 significant figures.
  2. Find the value of \(v\).
CAIE M2 2008 June Q4
6 marks Challenging +1.2
4 \includegraphics[max width=\textwidth, alt={}, center]{36259e2a-aa9b-4655-b0c2-891f96c3f5a4-3_375_627_1448_758} Uniform rods \(A B , A C\) and \(B C\) have lengths \(3 \mathrm {~m} , 4 \mathrm {~m}\) and 5 m respectively, and weights \(15 \mathrm {~N} , 20 \mathrm {~N}\) and 25 N respectively. The rods are rigidly joined to form a right-angled triangular frame \(A B C\). The frame is hinged at \(B\) to a fixed point and is held in equilibrium, with \(A C\) horizontal, by means of an inextensible string attached at \(C\). The string is at right angles to \(B C\) and the tension in the string is \(T \mathrm {~N}\) (see diagram).
  1. Find the value of \(T\). A uniform triangular lamina \(P Q R\), of weight 60 N , has the same size and shape as the frame \(A B C\). The lamina is now attached to the frame with \(P , Q\) and \(R\) at \(A , B\) and \(C\) respectively. The composite body is held in equilibrium with \(A , B\) and \(C\) in the same positions as before. Find
  2. the new value of \(T\),
  3. the magnitude of the vertical component of the force acting on the composite body at \(B\).
CAIE M2 2008 June Q5
7 marks Standard +0.3
5 \includegraphics[max width=\textwidth, alt={}, center]{36259e2a-aa9b-4655-b0c2-891f96c3f5a4-4_547_933_269_607} Particles \(A\) and \(B\) are projected simultaneously from the top \(T\) of a vertical tower, and move in the same vertical plane. \(T\) is 7.2 m above horizontal ground. \(A\) is projected horizontally with speed \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(B\) is projected at an angle of \(60 ^ { \circ }\) above the horizontal with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 } . A\) and \(B\) move away from each other (see diagram).
  1. Find the time taken for \(A\) to reach the ground. At the instant when \(A\) hits the ground,
  2. show that \(B\) is approximately 5.2 m above the ground,
  3. find the distance \(A B\).
CAIE M2 2008 June Q6
11 marks Standard +0.8
6 One end of a light elastic string of natural length 1.25 m and modulus of elasticity 20 N is attached to a fixed point \(O\). A particle \(P\) of mass 0.5 kg is attached to the other end of the string. \(P\) is held at rest at \(O\) and then released. When the extension of the string is \(x \mathrm {~m}\) the speed of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Show that \(v ^ { 2 } = - 32 x ^ { 2 } + 20 x + 25\).
  2. Find the maximum speed of \(P\).
  3. Find the acceleration of \(P\) when it is at its lowest point.
CAIE M2 2008 June Q7
12 marks Standard +0.3
7 A particle \(P\) of mass 0.5 kg moves on a horizontal surface along the straight line \(O A\), in the direction from \(O\) to \(A\). The coefficient of friction between \(P\) and the surface is 0.08 . Air resistance of magnitude \(0.2 v \mathrm {~N}\) opposes the motion, where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the speed of \(P\) at time \(t \mathrm {~s}\). The particle passes through \(O\) with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when \(t = 0\).
  1. Show that \(2.5 \frac { \mathrm {~d} v } { \mathrm {~d} t } = - ( v + 2 )\) and hence find the value of \(t\) when \(v = 0\).
  2. Show that \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 6 \mathrm { e } ^ { - 0.4 t } - 2\), where \(x \mathrm {~m}\) is the displacement of \(P\) from \(O\) at time \(t \mathrm {~s}\), and hence find the distance \(O P\) when \(v = 0\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE M2 2009 June Q1
4 marks Standard +0.3
1 A uniform lamina is in the form of a sector of a circle with centre \(O\), radius 0.2 m and angle 1.5 radians. The lamina rotates in a horizontal plane about a fixed vertical axis through \(O\). The centre of mass of the lamina moves with speed \(0.4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Show that the angular speed of the lamina is \(3.30 \mathrm { rad } \mathrm { s } ^ { - 1 }\), correct to 3 significant figures.
CAIE M2 2009 June Q2
4 marks Challenging +1.2
2 \includegraphics[max width=\textwidth, alt={}, center]{fb79f949-567c-4dbb-8533-7b7278cad21c-2_839_330_539_906} \(A B\) is a diameter of a uniform solid hemisphere with centre \(O\), radius 10 cm and weight 12 N . One end of a light inextensible string is attached to the hemisphere at \(B\) and the other end is attached to a fixed point \(C\) of a vertical wall. The hemisphere is in equilibrium with \(A\) in contact with the wall at a point vertically below \(C\). The centre of mass \(G\) of the hemisphere is at the same horizontal level as \(A\), and angle \(A B C\) is a right angle (see diagram). Calculate the tension in the string.
CAIE M2 2009 June Q3
6 marks Standard +0.3
3 A particle \(P\) starts from a fixed point \(O\) and moves in a straight line. When the displacement of \(P\) from \(O\) is \(x \mathrm {~m}\), its velocity is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and its acceleration is \(\frac { 1 } { x + 2 } \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Given that \(v = 2\) when \(x = 0\), use integration to show that \(v ^ { 2 } = 2 \ln \left( \frac { 1 } { 2 } x + 1 \right) + 4\).
  2. Find the value of \(v\) when the acceleration of \(P\) is \(\frac { 1 } { 4 } \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
CAIE M2 2009 June Q4
7 marks Standard +0.3
4 \includegraphics[max width=\textwidth, alt={}, center]{fb79f949-567c-4dbb-8533-7b7278cad21c-3_437_444_269_849} A particle of mass 0.12 kg is moving on the smooth inside surface of a fixed hollow sphere of radius 0.5 m . The particle moves in a horizontal circle whose centre is 0.3 m below the centre of the sphere (see diagram).
  1. Show that the force exerted by the sphere on the particle has magnitude 2 N .
  2. Find the speed of the particle.
  3. Find the time taken for the particle to complete one revolution.
CAIE M2 2009 June Q5
8 marks Standard +0.3
5 A small stone is projected from a point \(O\) on horizontal ground with speed \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle \(\theta ^ { \circ }\) above the horizontal. Referred to horizontal and vertically upwards axes through \(O\), the equation of the stone's trajectory is \(y = 0.75 x - 0.02 x ^ { 2 }\), where \(x\) and \(y\) are in metres. Find
  1. the values of \(\theta\) and \(V\),
  2. the distance from \(O\) of the point where the stone hits the ground,
  3. the greatest height reached by the stone.
CAIE M2 2009 June Q6
10 marks Standard +0.3
6 \includegraphics[max width=\textwidth, alt={}, center]{fb79f949-567c-4dbb-8533-7b7278cad21c-3_200_639_1754_753} A particle \(P\) of mass 1.6 kg is attached to one end of each of two light elastic strings. The other ends of the strings are attached to fixed points \(A\) and \(B\) which are 2 m apart on a smooth horizontal table. The string attached to \(A\) has natural length 0.25 m and modulus of elasticity 4 N , and the string attached to \(B\) has natural length 0.25 m and modulus of elasticity 8 N . The particle is held at the mid-point \(M\) of \(A B\) (see diagram).
  1. Find the tensions in the strings.
  2. Show that the total elastic potential energy in the two strings is 13.5 J . \(P\) is released from rest and in the subsequent motion both strings remain taut. The displacement of \(P\) from \(M\) is denoted by \(x \mathrm {~m}\). Find
  3. the initial acceleration of \(P\),
  4. the non-zero value of \(x\) at which the speed of \(P\) is zero. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{fb79f949-567c-4dbb-8533-7b7278cad21c-4_529_542_269_804} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} A uniform solid body has a cross-section as shown in Fig. 1.
  5. Show that the centre of mass of the body is 2.5 cm from the plane face containing \(O B\) and 3.5 cm from the plane face containing \(O A\).
  6. The solid is placed on a rough plane which is initially horizontal. The coefficient of friction between the solid and the plane is \(\mu\).
    (a) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{fb79f949-567c-4dbb-8533-7b7278cad21c-4_332_469_1320_918} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} The solid is placed with \(O A\) in contact with the plane, and then the plane is tilted so that \(O A\) lies along a line of greatest slope with \(A\) higher than \(O\) (see Fig. 2). When the angle of inclination is sufficiently great the solid starts to topple (without sliding). Show that \(\mu > \frac { 5 } { 7 }\).
    [0pt] [5]
    (b) \includegraphics[max width=\textwidth, alt={}, center]{fb79f949-567c-4dbb-8533-7b7278cad21c-4_291_465_1987_918} Instead, the solid is placed with \(O B\) in contact with the plane, and then the plane is tilted so that \(O B\) lies along a line of greatest slope with \(B\) higher than \(O\) (see Fig. 3). When the angle of inclination is sufficiently great the solid starts to slide (without toppling). Find another inequality for \(\mu\).
CAIE M2 2010 June Q1
4 marks Standard +0.3
1 \includegraphics[max width=\textwidth, alt={}, center]{ae809dfc-c5af-4c0a-9c88-009949d3e9f9-2_618_441_253_852} A frame consists of a uniform semicircular wire of radius 20 cm and mass 2 kg , and a uniform straight wire of length 40 cm and mass 0.9 kg . The ends of the semicircular wire are attached to the ends of the straight wire (see diagram). Find the distance of the centre of mass of the frame from the straight wire.
CAIE M2 2010 June Q2
5 marks Standard +0.8
2 \includegraphics[max width=\textwidth, alt={}, center]{ae809dfc-c5af-4c0a-9c88-009949d3e9f9-2_551_519_1231_813} A uniform solid cone has height 30 cm and base radius \(r \mathrm {~cm}\). The cone is placed with its axis vertical on a rough horizontal plane. The plane is slowly tilted and the cone remains in equilibrium until the angle of inclination of the plane reaches \(35 ^ { \circ }\), when the cone topples. The diagram shows a cross-section of the cone.
  1. Find the value of \(r\).
  2. Show that the coefficient of friction between the cone and the plane is greater than 0.7 .
CAIE M2 2010 June Q3
6 marks Moderate -0.8
3 \includegraphics[max width=\textwidth, alt={}, center]{ae809dfc-c5af-4c0a-9c88-009949d3e9f9-3_456_511_260_817} A particle of mass 0.24 kg is attached to one end of a light inextensible string of length 2 m . The other end of the string is attached to a fixed point. The particle moves with constant speed in a horizontal circle. The string makes an angle \(\theta\) with the vertical (see diagram), and the tension in the string is \(T \mathrm {~N}\). The acceleration of the particle has magnitude \(7.5 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Show that \(\tan \theta = 0.75\) and find the value of \(T\).
  2. Find the speed of the particle.
CAIE M2 2010 June Q4
5 marks Standard +0.3
4 \includegraphics[max width=\textwidth, alt={}, center]{ae809dfc-c5af-4c0a-9c88-009949d3e9f9-3_727_565_1256_790} A uniform lamina of weight 15 N is in the form of a trapezium \(A B C D\) with dimensions as shown in the diagram. The lamina is freely hinged at \(A\) to a fixed point. One end of a light inextensible string is attached to the lamina at \(B\). The lamina is in equilibrium with \(A B\) horizontal; the string is taut and in the same vertical plane as the lamina, and makes an angle of \(30 ^ { \circ }\) upwards from the horizontal (see diagram). Find the tension in the string.
CAIE M2 2010 June Q5
9 marks Standard +0.3
5 A particle is projected from a point \(O\) on horizontal ground. The velocity of projection has magnitude \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and direction upwards at an angle \(\theta\) to the horizontal. The particle passes through the point which is 7 m above the ground and 16 m horizontally from \(O\), and hits the ground at the point \(A\).
  1. Using the equation of the particle's trajectory and the identity \(\sec ^ { 2 } \theta = 1 + \tan ^ { 2 } \theta\), show that the possible values of \(\tan \theta\) are \(\frac { 3 } { 4 }\) and \(\frac { 17 } { 4 }\).
  2. Find the distance \(O A\) for each of the two possible values of \(\tan \theta\).
  3. Sketch in the same diagram the two possible trajectories.
CAIE M2 2010 June Q6
10 marks Standard +0.3
6 \includegraphics[max width=\textwidth, alt={}, center]{ae809dfc-c5af-4c0a-9c88-009949d3e9f9-4_324_1267_794_440} A particle \(P\) of mass 0.35 kg is attached to the mid-point of a light elastic string of natural length 4 m . The ends of the string are attached to fixed points \(A\) and \(B\) which are 4.8 m apart at the same horizontal level. \(P\) hangs in equilibrium at a point 0.7 m vertically below the mid-point \(M\) of \(A B\) (see diagram).
  1. Find the tension in the string and hence show that the modulus of elasticity of the string is 25 N . \(P\) is now held at rest at a point 1.8 m vertically below \(M\), and is then released.
  2. Find the speed with which \(P\) passes through \(M\).