5 A particle is projected from a point \(O\) on horizontal ground. The velocity of projection has magnitude \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and direction upwards at an angle \(\theta\) to the horizontal. The particle passes through the point which is 7 m above the ground and 16 m horizontally from \(O\), and hits the ground at the point \(A\).
- Using the equation of the particle's trajectory and the identity \(\sec ^ { 2 } \theta = 1 + \tan ^ { 2 } \theta\), show that the possible values of \(\tan \theta\) are \(\frac { 3 } { 4 }\) and \(\frac { 17 } { 4 }\).
- Find the distance \(O A\) for each of the two possible values of \(\tan \theta\).
- Sketch in the same diagram the two possible trajectories.