OCR C3 2012 June — Question 8

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
Year2012
SessionJune
TopicHarmonic Form

8
  1. Express \(3 \sin \theta + 4 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence
    (a) solve the equation \(3 \sin \theta + 4 \cos \theta + 1 = 0\), giving all solutions for which \(- 180 ^ { \circ } < \theta < 180 ^ { \circ }\),
    (b) find the values of the positive constants \(k\) and \(c\) such that $$- 37 \leqslant k ( 3 \sin \theta + 4 \cos \theta ) + c \leqslant 43$$ for all values of \(\theta\).