Edexcel C3 2015 June — Question 3

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2015
SessionJune
TopicHarmonic Form

3. $$g ( \theta ) = 4 \cos 2 \theta + 2 \sin 2 \theta$$ Given that \(\mathrm { g } ( \theta ) = R \cos ( 2 \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\),
  1. find the exact value of \(R\) and the value of \(\alpha\) to 2 decimal places.
  2. Hence solve, for \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\), $$4 \cos 2 \theta + 2 \sin 2 \theta = 1$$ giving your answers to one decimal place. Given that \(k\) is a constant and the equation \(\mathrm { g } ( \theta ) = k\) has no solutions,
  3. state the range of possible values of \(k\).