Solve via substitution then back-substitute

A question is this type if and only if it requires using a given substitution to transform the equation, solving the transformed equation, then expressing the answer in terms of the original variable.

37 questions · Challenging +1.4

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2020 June Q7
11 marks Challenging +1.8
7 It is given that \(x = t ^ { 3 } y\) and $$t ^ { 3 } \frac { d ^ { 2 } y } { d t ^ { 2 } } + \left( 4 t ^ { 3 } + 6 t ^ { 2 } \right) \frac { d y } { d t } + \left( 13 t ^ { 3 } + 12 t ^ { 2 } + 6 t \right) y = 61 e ^ { \frac { 1 } { 2 } t }$$
  1. Show that $$\frac { d ^ { 2 } x } { d t ^ { 2 } } + 4 \frac { d x } { d t } + 13 x = 61 e ^ { \frac { 1 } { 2 } t }$$
  2. Find the general solution for \(y\) in terms of \(t\).
CAIE Further Paper 2 2021 November Q7
11 marks Challenging +1.8
7 It is given that \(y = x ^ { 2 } w\) and $$x ^ { 2 } \frac { d ^ { 2 } w } { d x ^ { 2 } } + 4 x ( x + 1 ) \frac { d w } { d x } + \left( 5 x ^ { 2 } + 8 x + 2 \right) w = 5 x ^ { 2 } + 4 x + 2$$
  1. Show that $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 4 \frac { d y } { d x } + 5 y = 5 x ^ { 2 } + 4 x + 2$$
  2. Find the general solution for \(w\) in terms of \(x\).
CAIE Further Paper 2 2022 November Q8
14 marks Challenging +1.8
8 It is given that \(\mathrm { y } = \operatorname { coshu }\), where \(u > 0\), and $$\sqrt { \cosh ^ { 2 } u - 1 } \left( \frac { d ^ { 2 } u } { d x ^ { 2 } } + \frac { d u } { d x } \right) + \cosh u \left( \frac { d u } { d x } \right) ^ { 2 } - 2 \cosh u = 4 e ^ { - x }$$
  1. Show that $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + \frac { d y } { d x } - 2 y = 4 e ^ { - x }$$
  2. Find \(u\) in terms of \(x\), given that, when \(x = 0 , u = \ln 3\) and \(\frac { d u } { d x } = 3\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2023 November Q8
14 marks Challenging +1.8
8 It is given that \(\mathbf { v } = y ^ { 4 }\) and $$y ^ { 3 } \frac { d ^ { 2 } y } { d x ^ { 2 } } + 3 y ^ { 2 } \left( \frac { d y } { d x } \right) ^ { 2 } + y ^ { 3 } \frac { d y } { d x } + y ^ { 4 } = e ^ { - 2 x }$$
  1. Show that $$\frac { d ^ { 2 } v } { d x ^ { 2 } } + \frac { d v } { d x } + 4 v = 4 e ^ { - 2 x }$$
  2. Find \(y\) in terms of \(x\), given that, when \(x = 0 , y = 1\) and \(\frac { \mathrm { dy } } { \mathrm { dx } } = - \frac { 3 } { 8 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
Edexcel F2 2023 January Q9
13 marks Challenging +1.2
  1. (a) Given that \(x = t ^ { \frac { 1 } { 2 } }\), determine, in terms of \(y\) and \(t\),
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) (b) Hence show that the transformation \(x = t ^ { \frac { 1 } { 2 } }\), where \(t > 0\), transforms the differential equation
    $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 6 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 9 x ^ { 3 } y = x ^ { 5 }$$ into the differential equation $$4 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 12 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 9 y = t$$ (c) Solve differential equation (II) to determine a general solution for \(y\) in terms of \(t\).
    (d) Hence determine the general solution of differential equation (I).
Edexcel F2 2020 June Q8
14 marks Challenging +1.2
8. (a) Show that the transformation \(x = \mathrm { e } ^ { u }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - 8 y = 4 \ln x \quad x > 0$$ into the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} u } - 8 y = 4 u$$ (b) Determine the general solution of differential equation (II), expressing \(y\) as a function of \(u\).
(c) Hence obtain the general solution of differential equation (I).
VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
Edexcel F2 2022 June Q7
12 marks Challenging +1.2
  1. (a) Show that the transformation \(y = x v\) transforms the equation
$$3 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \frac { 6 } { x } \frac { \mathrm {~d} y } { \mathrm {~d} x } + \frac { 6 y } { x ^ { 2 } } + 3 y = x ^ { 2 } \quad x \neq 0$$ into the equation $$3 \frac { \mathrm {~d} ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 3 v = x$$ (b) Hence obtain the general solution of the differential equation (I), giving your answer in the form \(y = \mathrm { f } ( x )\)
Edexcel F2 2024 June Q8
10 marks Challenging +1.3
  1. (a) Given that \(t = \ln x\), where \(x > 0\), show that
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \mathrm { e } ^ { - 2 t } \left( \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} t } \right)$$ (b) Hence show that the transformation \(t = \ln x\), where \(x > 0\), transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 y = 1 + 4 \ln x - 2 ( \ln x ) ^ { 2 }$$ into the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} t } - 2 y = 1 + 4 t - 2 t ^ { 2 }$$ (c) Solve differential equation (II) to determine \(y\) in terms of \(t\).
(d) Hence determine the general solution of differential equation (I).
Edexcel FP2 2005 June Q3
12 marks Challenging +1.2
3. (a) Show that the transformation \(y = x v\) transforms the equation $$\begin{array} { l l } x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + \left( 2 + 9 x ^ { 2 } \right) y = x ^ { 5 } , \\ \text { into the equation } & \frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 9 v = x ^ { 2 } . \end{array}$$I (b) Solve the differential equation II to find \(v\) as a function of \(x\).
(c) Hence state the general solution of the differential equation I.
(1)(Total 12 marks)
Edexcel FP2 2007 June Q3
14 marks Challenging +1.2
3. A scientist is modelling the amount of a chemical in the human bloodstream. The amount \(x\) of the chemical, measured in \(\mathrm { mg } l ^ { - 1 }\), at time \(t\) hours satisfies the differential equation $$2 x \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 6 \left( \frac { \mathrm { dx } } { \mathrm { dt } } \right) ^ { 2 } = x ^ { 2 } - 3 x ^ { 4 } , \quad x > 0$$
  1. Show that the substitution \(\mathrm { y } = \frac { 1 } { x ^ { 2 } }\) transforms this differential equation into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + y = 3$$
  2. Find the general solution of differential equation \(I\). Given that at time \(t = 0 , x = \frac { 1 } { 2 }\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\),
  3. find an expression for \(x\) in terms of \(t\),
  4. write down the maximum value of \(x\) as \(t\) varies.
Edexcel FP2 2013 June Q7
13 marks Challenging +1.2
  1. (a) Show that the transformation \(y = x v\) transforms the equation
$$4 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 8 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + \left( 8 + 4 x ^ { 2 } \right) y = x ^ { 4 }$$ into the equation $$4 \frac { \mathrm {~d} ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 4 v = x$$ (b) Solve the differential equation (II) to find \(v\) as a function of \(x\).
(c) Hence state the general solution of the differential equation (I).
Edexcel F2 2021 October Q7
11 marks Challenging +1.2
7. (a) Show that the transformation \(x = t ^ { 2 }\) transforms the differential equation $$4 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 1 + 2 \sqrt { x } ) \frac { \mathrm { d } y } { \mathrm {~d} x } - 15 y = 15 x$$ into the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } - 15 y = 15 t ^ { 2 }$$ (b) Solve differential equation (II) to determine \(y\) in terms of \(t\).
(c) Hence determine the general solution of differential equation (I). \includegraphics[max width=\textwidth, alt={}, center]{8fa1e7da-009f-4b7f-9fa8-21a1768bfd73-24_2258_53_308_1980}
CAIE FP1 2008 June Q11
11 marks Challenging +1.3
11 Show that, with a suitable value of the constant \(\alpha\), the substitution \(y = x ^ { \alpha } w\) reduces the differential equation $$2 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( 3 x ^ { 2 } + 8 x \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + \left( x ^ { 2 } + 6 x + 4 \right) y = \mathrm { f } ( x )$$ to $$2 \frac { \mathrm {~d} ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} w } { \mathrm {~d} x } + w = \mathrm { f } ( x )$$ Find the general solution for \(y\) in the case where \(\mathrm { f } ( x ) = 6 \sin 2 x + 7 \cos 2 x\).
CAIE FP1 2010 June Q11 EITHER
Challenging +1.3
The variables \(z\) and \(x\) are related by the differential equation $$3 z ^ { 2 } \frac { \mathrm {~d} ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 6 z ^ { 2 } \frac { \mathrm {~d} z } { \mathrm {~d} x } + 6 z \left( \frac { \mathrm {~d} z } { \mathrm {~d} x } \right) ^ { 2 } + 5 z ^ { 3 } = 5 x + 2$$ Use the substitution \(y = z ^ { 3 }\) to show that \(y\) and \(x\) are related by the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 5 x + 2$$ Given that \(z = 1\) and \(\frac { \mathrm { d } z } { \mathrm {~d} x } = - \frac { 2 } { 3 }\) when \(x = 0\), find \(z\) in terms of \(x\). Deduce that, for large positive values of \(x , z \approx x ^ { \frac { 1 } { 3 } }\).
CAIE FP1 2011 June Q7
11 marks Challenging +1.8
7 The variables \(x\) and \(y\) are related by the differential equation $$y ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - 5 y ^ { 3 } = 8 \mathrm { e } ^ { - x }$$ Given that \(v = y ^ { 3 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} v } { \mathrm {~d} x } - 15 v = 24 \mathrm { e } ^ { - x }$$ Hence find the general solution for \(y\) in terms of \(x\).
CAIE FP1 2015 June Q11 EITHER
Challenging +1.3
Show that the substitution \(v = \frac { 1 } { y }\) reduces the differential equation $$\frac { 2 } { y ^ { 3 } } \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - \frac { 1 } { y ^ { 2 } } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \frac { 2 } { y ^ { 2 } } \frac { \mathrm {~d} y } { \mathrm {~d} x } + \frac { 5 } { y } = 17 + 6 x - 5 x ^ { 2 }$$ to the differential equation $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 5 v = 17 + 6 x - 5 x ^ { 2 }$$ Hence find \(y\) in terms of \(x\), given that when \(x = 0 , y = \frac { 1 } { 2 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 1\).
CAIE FP1 2018 June Q10
12 marks Challenging +1.2
10 It is given that \(t \neq 0\) and $$t \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 9 t x = 3 t ^ { 2 } + 1$$
  1. Show that if \(y = t x\) then $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 9 y = 3 t ^ { 2 } + 1$$
  2. Find \(x\) in terms of \(t\), given that \(x = \frac { 1 } { 9 } \pi\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 2 } { 3 }\) when \(t = \frac { 1 } { 3 } \pi\).
CAIE FP1 2006 November Q8
9 marks Challenging +1.8
8 Given that $$2 y ^ { 3 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 12 y ^ { 3 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y ^ { 2 } \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 17 y ^ { 4 } = 13 \mathrm { e } ^ { - 4 x }$$ and that \(v = y ^ { 4 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 6 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 34 v = 26 \mathrm { e } ^ { - 4 x }$$ Hence find the general solution for \(y\) in terms of \(x\).
CAIE FP1 2010 November Q11
12 marks Challenging +1.2
11 It is given that \(x \neq 0\) and $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 x y = 8 x ^ { 2 } + 16$$ Show that if \(z = x y\) then $$\frac { \mathrm { d } ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 4 z = 8 x ^ { 2 } + 16$$ Find \(y\) in terms of \(x\), given that \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 2\) when \(x = \frac { 1 } { 2 } \pi\).
CAIE FP1 2013 November Q16 OR
Challenging +1.8
Given that $$y ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 3 y ^ { 3 } = 25 \mathrm { e } ^ { - 2 x }$$ and that \(v = y ^ { 3 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 9 v = 75 \mathrm { e } ^ { - 2 x }$$ Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2014 November Q9
11 marks Challenging +1.3
9 Given that $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + ( 2 x + 2 ) \frac { \mathrm { d } y } { \mathrm {~d} x } + ( 2 - 3 x ) y = 10 \mathrm { e } ^ { 2 x }$$ and that \(v = x y\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} v } { \mathrm {~d} x } - 3 v = 10 \mathrm { e } ^ { 2 x }$$ Find the general solution for \(y\) in terms of \(x\).
CAIE FP1 2019 November Q11 EITHER
10 marks Challenging +1.8
It is given that \(w = \cos y\) and $$\tan y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 } + 2 \tan y \frac { \mathrm {~d} y } { \mathrm {~d} x } = 1 + \mathrm { e } ^ { - 2 x } \sec y$$
  1. Show that $$\frac { \mathrm { d } ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} w } { \mathrm {~d} x } + w = - \mathrm { e } ^ { - 2 x }$$
  2. Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , y = \frac { 1 } { 3 } \pi\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 3 } }\). [10]
CAIE FP1 2007 November Q12 OR
Challenging +1.8
Show that the substitution \(y = \frac { 1 } { w }\) reduces the differential equation $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 y \frac { \mathrm {~d} y } { \mathrm {~d} x } - 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - 5 y ^ { 2 } = \left( 5 x ^ { 2 } + 4 x + 2 \right) y ^ { 3 }$$ to $$\frac { \mathrm { d } ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} w } { \mathrm {~d} x } + 5 w = - 5 x ^ { 2 } - 4 x - 2$$ Find the general solution for \(w\) in terms of \(x\). Find a function f such that \(\lim _ { x \rightarrow \infty } \left( \frac { y } { \mathrm { f } ( x ) } \right) = 1\).
CAIE FP1 2011 November Q11 OR
Challenging +1.2
Given that $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x ( 1 + x ) \frac { \mathrm { d } y } { \mathrm {~d} x } + 2 \left( 1 + 4 x + 2 x ^ { 2 } \right) y = 8 x ^ { 2 }$$ and that \(x ^ { 2 } y = z\), show that $$\frac { \mathrm { d } ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} z } { \mathrm {~d} x } + 4 z = 8 x ^ { 2 }$$ Find the general solution for \(y\) in terms of \(x\). Describe the behaviour of \(y\) as \(x \rightarrow \infty\).
AQA FP3 2012 January Q7
12 marks Challenging +1.2
7 It is given that, for \(x \neq 0 , y\) satisfies the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 3 x + 1 ) \frac { \mathrm { d } y } { \mathrm {~d} x } + 3 y ( 3 x + 2 ) = 18 x$$
  1. Show that the substitution \(u = x y\) transforms this differential equation into $$\frac { \mathrm { d } ^ { 2 } u } { \mathrm {~d} x ^ { 2 } } + 6 \frac { \mathrm {~d} u } { \mathrm {~d} x } + 9 u = 18 x$$
  2. Hence find the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 3 x + 1 ) \frac { \mathrm { d } y } { \mathrm {~d} x } + 3 y ( 3 x + 2 ) = 18 x$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
    (8 marks)