Sum geometric series with complex terms

A question is this type if and only if it asks to find the sum of a finite or infinite geometric series involving complex exponentials or trigonometric functions, often separating real and imaginary parts.

26 questions · Challenging +1.3

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2021 June Q5
10 marks Challenging +1.2
5
  1. State the sum of the series \(z + z ^ { 2 } + z ^ { 3 } + \ldots + z ^ { n }\), for \(z \neq 1\).
  2. Given that \(z\) is an \(n\)th root of unity and \(z \neq 1\), deduce that \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 } = 0\).
  3. Given instead that \(z = \frac { 1 } { 3 } ( \cos \theta + \mathrm { i } \sin \theta )\), use de Moivre's theorem to show that $$\sum _ { m = 1 } ^ { \infty } 3 ^ { - m } \cos m \theta = \frac { 3 \cos \theta - 1 } { 10 - 6 \cos \theta }$$
CAIE Further Paper 2 2022 November Q7
10 marks Challenging +1.8
7
  1. State the sum of the series \(1 + \mathrm { w } + \mathrm { w } ^ { 2 } + \mathrm { w } ^ { 3 } + \ldots + \mathrm { w } ^ { \mathrm { n } - 1 }\), for \(w \neq 1\).
  2. Show that \(( 1 + i \tan \theta ) ^ { k } = \sec ^ { k } \theta ( \cos k \theta + i \sin k \theta )\), where \(\theta\) is not an integer multiple of \(\frac { 1 } { 2 } \pi\).
  3. By considering \(\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } - 1 } ( 1 + \mathrm { i } \tan \theta ) ^ { \mathrm { k } }\), show that $$\sum _ { k = 0 } ^ { n - 1 } \sec ^ { k } \theta \sin k \theta = \cot \theta \left( 1 - \sec ^ { n } \theta \cos n \theta \right)$$ provided \(\theta\) is not an integer multiple of \(\frac { 1 } { 2 } \pi\).
  4. Hence find \(\sum _ { k = 0 } ^ { 6 m - 1 } 2 ^ { k } \sin \left( \frac { 1 } { 3 } k \pi \right)\) in terms of \(m\).
CAIE Further Paper 2 2023 November Q8
15 marks Challenging +1.8
8
  1. State the sum of the series \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 }\), for \(z \neq 1\).
  2. By letting \(z = \cos \theta + i \sin \theta\), where \(\cos \theta \neq 1\), show that $$1 + \cos \theta + \cos 2 \theta + \ldots + \cos ( n - 1 ) \theta = \frac { 1 } { 2 } \left( 1 - \cos n \theta + \frac { \sin n \theta \sin \theta } { 1 - \cos \theta } \right)$$ \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-15_833_785_214_680} The diagram shows the curve with equation \(\mathrm { y } = \cos \mathrm { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  3. By considering the sum of the areas of these rectangles, show that $$\int _ { 0 } ^ { 1 } \cos x d x < \frac { 1 } { 2 n } \left( 1 - \cos 1 + \frac { \sin 1 \sin \frac { 1 } { n } } { 1 - \cos \frac { 1 } { n } } \right)$$
  4. Use a similar method to find, in terms of \(n\), a lower bound for \(\int _ { 0 } ^ { 1 } \cos x d x\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2023 November Q8
15 marks Challenging +1.8
8
  1. State the sum of the series \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 }\), for \(z \neq 1\).
  2. By letting \(z = \cos \theta + i \sin \theta\), where \(\cos \theta \neq 1\), show that $$1 + \cos \theta + \cos 2 \theta + \ldots + \cos ( n - 1 ) \theta = \frac { 1 } { 2 } \left( 1 - \cos n \theta + \frac { \sin n \theta \sin \theta } { 1 - \cos \theta } \right)$$ \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-15_833_785_214_680} The diagram shows the curve with equation \(\mathrm { y } = \cos \mathrm { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  3. By considering the sum of the areas of these rectangles, show that $$\int _ { 0 } ^ { 1 } \cos x d x < \frac { 1 } { 2 n } \left( 1 - \cos 1 + \frac { \sin 1 \sin \frac { 1 } { n } } { 1 - \cos \frac { 1 } { n } } \right)$$
  4. Use a similar method to find, in terms of \(n\), a lower bound for \(\int _ { 0 } ^ { 1 } \cos x d x\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
OCR FP3 2006 June Q7
12 marks Challenging +1.2
7 The series \(C\) and \(S\) are defined for \(0 < \theta < \pi\) by $$\begin{aligned} & C = 1 + \cos \theta + \cos 2 \theta + \cos 3 \theta + \cos 4 \theta + \cos 5 \theta \\ & S = \quad \sin \theta + \sin 2 \theta + \sin 3 \theta + \sin 4 \theta + \sin 5 \theta \end{aligned}$$
  1. Show that \(C + \mathrm { i } S = \frac { \mathrm { e } ^ { 3 \mathrm { i } \theta } - \mathrm { e } ^ { - 3 \mathrm { i } \theta } } { \mathrm { e } ^ { \frac { 1 } { 2 } \mathrm { i } \theta } - \mathrm { e } ^ { - \frac { 1 } { 2 } \mathrm { i } \theta } } \mathrm { e } ^ { \frac { 5 } { 2 } \mathrm { i } \theta }\).
  2. Deduce that \(C = \sin 3 \theta \cos \frac { 5 } { 2 } \theta \operatorname { cosec } \frac { 1 } { 2 } \theta\) and write down the corresponding expression for \(S\).
  3. Hence find the values of \(\theta\), in the range \(0 < \theta < \pi\), for which \(C = S\).
OCR MEI FP2 2006 January Q2
18 marks Challenging +1.2
2 In this question, \(\theta\) is a real number with \(0 < \theta < \frac { 1 } { 6 } \pi\), and \(w = \frac { 1 } { 2 } \mathrm { e } ^ { 3 \mathrm { j } \theta }\).
  1. State the modulus and argument of each of the complex numbers $$w , \quad w ^ { * } \quad \text { and } \quad \mathrm { j } w .$$ Illustrate these three complex numbers on an Argand diagram.
  2. Show that \(( 1 + w ) \left( 1 + w ^ { * } \right) = \frac { 5 } { 4 } + \cos 3 \theta\). Infinite series \(C\) and \(S\) are defined by $$\begin{aligned} & C = \cos 2 \theta - \frac { 1 } { 2 } \cos 5 \theta + \frac { 1 } { 4 } \cos 8 \theta - \frac { 1 } { 8 } \cos 11 \theta + \ldots \\ & S = \sin 2 \theta - \frac { 1 } { 2 } \sin 5 \theta + \frac { 1 } { 4 } \sin 8 \theta - \frac { 1 } { 8 } \sin 11 \theta + \ldots \end{aligned}$$
  3. Show that \(C = \frac { 4 \cos 2 \theta + 2 \cos \theta } { 5 + 4 \cos 3 \theta }\), and find a similar expression for \(S\).
OCR MEI FP2 2007 January Q2
18 marks Challenging +1.8
2
  1. You are given the complex numbers \(w = 3 \mathrm { e } ^ { - \frac { 1 } { 12 } \pi \mathrm { j } }\) and \(z = 1 - \sqrt { 3 } \mathrm { j }\).
    1. Find the modulus and argument of each of the complex numbers \(w , z\) and \(\frac { w } { z }\).
    2. Hence write \(\frac { w } { z }\) in the form \(a + b \mathrm { j }\), giving the exact values of \(a\) and \(b\).
  2. In this part of the question, \(n\) is a positive integer and \(\theta\) is a real number with \(0 < \theta < \frac { \pi } { n }\).
    1. Express \(\mathrm { e } ^ { - \frac { 1 } { 2 } \mathrm { j } \theta } + \mathrm { e } ^ { \frac { 1 } { 2 } \mathrm { j } \theta }\) in simplified trigonometric form, and hence, or otherwise, show that $$1 + \mathrm { e } ^ { \mathrm { j } \theta } = 2 \mathrm { e } ^ { \frac { 1 } { 2 } \mathrm { j } \theta } \cos \frac { 1 } { 2 } \theta$$ Series \(C\) and \(S\) are defined by $$\begin{aligned} & C = 1 + \binom { n } { 1 } \cos \theta + \binom { n } { 2 } \cos 2 \theta + \binom { n } { 3 } \cos 3 \theta + \ldots + \binom { n } { n } \cos n \theta \\ & S = \binom { n } { 1 } \sin \theta + \binom { n } { 2 } \sin 2 \theta + \binom { n } { 3 } \sin 3 \theta + \ldots + \binom { n } { n } \sin n \theta \end{aligned}$$
    2. Find \(C\) and \(S\), and show that \(\frac { S } { C } = \tan \frac { 1 } { 2 } n \theta\).
OCR MEI FP2 2008 January Q2
18 marks Challenging +1.2
2
  1. Find the 4th roots of 16j, in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\) where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Illustrate the 4th roots on an Argand diagram.
    1. Show that \(\left( 1 - 2 \mathrm { e } ^ { \mathrm { j } \theta } \right) \left( 1 - 2 \mathrm { e } ^ { - \mathrm { j } \theta } \right) = 5 - 4 \cos \theta\). Series \(C\) and \(S\) are defined by $$\begin{aligned} & C = 2 \cos \theta + 4 \cos 2 \theta + 8 \cos 3 \theta + \ldots + 2 ^ { n } \cos n \theta \\ & S = 2 \sin \theta + 4 \sin 2 \theta + 8 \sin 3 \theta + \ldots + 2 ^ { n } \sin n \theta \end{aligned}$$
    2. Show that \(C = \frac { 2 \cos \theta - 4 - 2 ^ { n + 1 } \cos ( n + 1 ) \theta + 2 ^ { n + 2 } \cos n \theta } { 5 - 4 \cos \theta }\), and find a similar expression for \(S\).
OCR MEI FP2 2012 January Q2
18 marks Standard +0.3
2
  1. The infinite series \(C\) and \(S\) are defined as follows. $$\begin{aligned} & C = 1 + a \cos \theta + a ^ { 2 } \cos 2 \theta + \ldots \\ & S = a \sin \theta + a ^ { 2 } \sin 2 \theta + a ^ { 3 } \sin 3 \theta + \ldots \end{aligned}$$ where \(a\) is a real number and \(| a | < 1\).
    By considering \(C + \mathrm { j } S\), show that \(C = \frac { 1 - a \cos \theta } { 1 + a ^ { 2 } - 2 a \cos \theta }\) and find a corresponding expression for \(S\).
  2. Express the complex number \(z = - 1 + \mathrm { j } \sqrt { 3 }\) in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\). Find the 4th roots of \(z\) in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\).
    Show \(z\) and its 4th roots in an Argand diagram.
    Find the product of the 4th roots and mark this as a point on your Argand diagram.
OCR MEI FP2 2014 June Q2
17 marks Standard +0.8
2
  1. The infinite series \(C\) and \(S\) are defined as follows. $$\begin{gathered} C = a \cos \theta + a ^ { 2 } \cos 2 \theta + a ^ { 3 } \cos 3 \theta + \ldots \\ S = a \sin \theta + a ^ { 2 } \sin 2 \theta + a ^ { 3 } \sin 3 \theta + \ldots \end{gathered}$$ where \(a\) is a real number and \(| a | < 1\).
    By considering \(C + \mathrm { j } S\), show that $$S = \frac { a \sin \theta } { 1 - 2 a \cos \theta + a ^ { 2 } }$$ Find a corresponding expression for \(C\).
  2. P is one vertex of a regular hexagon in an Argand diagram. The centre of the hexagon is at the origin. P corresponds to the complex number \(\sqrt { 3 } + \mathrm { j }\).
    1. Find, in the form \(x + \mathrm { j } y\), the complex numbers corresponding to the other vertices of the hexagon.
    2. The six complex numbers corresponding to the vertices of the hexagon are squared to form the vertices of a new figure. Find, in the form \(x + \mathrm { j } y\), the vertices of the new figure. Find the area of the new figure.
OCR FP3 2013 January Q7
12 marks Challenging +1.2
7 Let \(S = \mathrm { e } ^ { \mathrm { i } \theta } + \mathrm { e } ^ { 2 \mathrm { i } \theta } + \mathrm { e } ^ { 3 \mathrm { i } \theta } + \ldots + \mathrm { e } ^ { 10 \mathrm { i } \theta }\).
  1. (a) Show that, for \(\theta \neq 2 n \pi\), where \(n\) is an integer, $$S = \frac { \mathrm { e } ^ { \frac { 1 } { 2 } \mathrm { i } \theta } \left( \mathrm { e } ^ { 10 \mathrm { i } \theta } - 1 \right) } { 2 \mathrm { i } \sin \left( \frac { 1 } { 2 } \theta \right) }$$ (b) State the value of \(S\) for \(\theta = 2 n \pi\), where \(n\) is an integer.
  2. Hence show that, for \(\theta \neq 2 n \pi\), where \(n\) is an integer, $$\cos \theta + \cos 2 \theta + \cos 3 \theta + \ldots + \cos 10 \theta = \frac { \sin \left( \frac { 21 } { 2 } \theta \right) } { 2 \sin \left( \frac { 1 } { 2 } \theta \right) } - \frac { 1 } { 2 }$$
  3. Hence show that \(\theta = \frac { 1 } { 11 } \pi\) is a root of \(\cos \theta + \cos 2 \theta + \cos 3 \theta + \ldots + \cos 10 \theta = 0\) and find another root in the interval \(0 < \theta < \frac { 1 } { 4 } \pi\).
OCR FP3 2010 June Q5
8 marks Standard +0.8
5 Convergent infinite series \(C\) and \(S\) are defined by $$\begin{gathered} C = 1 + \frac { 1 } { 2 } \cos \theta + \frac { 1 } { 4 } \cos 2 \theta + \frac { 1 } { 8 } \cos 3 \theta + \ldots \\ S = \quad \frac { 1 } { 2 } \sin \theta + \frac { 1 } { 4 } \sin 2 \theta + \frac { 1 } { 8 } \sin 3 \theta + \ldots \end{gathered}$$
  1. Show that \(C + \mathrm { i } S = \frac { 2 } { 2 - \mathrm { e } ^ { \mathrm { i } \theta } }\).
  2. Hence show that \(C = \frac { 4 - 2 \cos \theta } { 5 - 4 \cos \theta }\), and find a similar expression for \(S\).
  3. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 17 y = 17 x + 36$$
  4. Show that, when \(x\) is large and positive, the solution approximates to a linear function, and state its equation.
CAIE FP1 2008 June Q10
10 marks Challenging +1.8
10 By considering \(\sum _ { n = 1 } ^ { N } z ^ { 2 n - 1 }\), where \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), show that $$\sum _ { n = 1 } ^ { N } \cos ( 2 n - 1 ) \theta = \frac { \sin ( 2 N \theta ) } { 2 \sin \theta }$$ where \(\sin \theta \neq 0\). Deduce that $$\sum _ { n = 1 } ^ { N } ( 2 n - 1 ) \sin \left[ \frac { ( 2 n - 1 ) \pi } { N } \right] = - N \operatorname { cosec } \frac { \pi } { N }$$
CAIE FP1 2009 June Q12 EITHER
Challenging +1.8
By considering \(\sum _ { k = 0 } ^ { n - 1 } ( 1 + \mathrm { i } \tan \theta ) ^ { k }\), show that $$\sum _ { k = 0 } ^ { n - 1 } \cos k \theta \sec ^ { k } \theta = \cot \theta \sin n \theta \sec ^ { n } \theta$$ provided \(\theta\) is not an integer multiple of \(\frac { 1 } { 2 } \pi\). Hence or otherwise show that $$\sum _ { k = 0 } ^ { n - 1 } 2 ^ { k } \cos \left( \frac { 1 } { 3 } k \pi \right) = \frac { 2 ^ { n } } { \sqrt { 3 } } \sin \left( \frac { 1 } { 3 } n \pi \right)$$ Given that \(0 < x < 1\), show that $$\sum _ { k = 0 } ^ { n - 1 } \frac { \cos \left( k \cos ^ { - 1 } x \right) } { x ^ { k } } = \frac { \sin \left( n \cos ^ { - 1 } x \right) } { x ^ { n - 1 } \sqrt { } \left( 1 - x ^ { 2 } \right) }$$
CAIE FP1 2014 June Q5
8 marks Challenging +1.2
5 State the sum of the series \(z + z ^ { 2 } + z ^ { 3 } + \ldots + z ^ { n }\), for \(z \neq 1\). By letting \(z = \cos \theta + \mathrm { i } \sin \theta\), show that $$\cos \theta + \cos 2 \theta + \cos 3 \theta + \ldots + \cos n \theta = \frac { \sin \frac { 1 } { 2 } n \theta } { \sin \frac { 1 } { 2 } \theta } \cos \frac { 1 } { 2 } ( n + 1 ) \theta$$ where \(\sin \frac { 1 } { 2 } \theta \neq 0\).
CAIE FP1 2015 June Q8
11 marks Challenging +1.8
8 By considering \(\sum _ { r = 1 } ^ { n } z ^ { 2 r - 1 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), show that, if \(\sin \theta \neq 0\), $$\sum _ { r = 1 } ^ { n } \sin ( 2 r - 1 ) \theta = \frac { \sin ^ { 2 } n \theta } { \sin \theta }$$ Deduce that $$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) \cos \left[ \frac { ( 2 r - 1 ) \pi } { 2 n } \right] = - \operatorname { cosec } \left( \frac { \pi } { 2 n } \right) \cot \left( \frac { \pi } { 2 n } \right)$$
CAIE FP1 2015 June Q6
9 marks Challenging +1.8
6 Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Use the binomial expansion of \(( 1 + z ) ^ { n }\), where \(n\) is a positive integer, to show that $$\binom { n } { 1 } \cos \theta + \binom { n } { 2 } \cos 2 \theta + \ldots + \binom { n } { n } \cos n \theta = 2 ^ { n } \cos ^ { n } \left( \frac { 1 } { 2 } \theta \right) \cos \left( \frac { 1 } { 2 } n \theta \right) - 1$$ Find $$\binom { n } { 1 } \sin \theta + \binom { n } { 2 } \sin 2 \theta + \ldots + \binom { n } { n } \sin n \theta$$
AQA Further Paper 2 Specimen Q15
8 marks Challenging +1.2
15
  1. Show that \(\left( 1 - \frac { 1 } { 4 } \mathrm { e } ^ { 2 \mathrm { i } \theta } \right) \left( 1 - \frac { 1 } { 4 } \mathrm { e } ^ { - 2 \mathrm { i } \theta } \right) = \frac { 1 } { 16 } ( 17 - 8 \cos 2 \theta )\)
    [0pt] [3 marks]
    15
  2. Given that the series \(\mathrm { e } ^ { 2 \mathrm { i } \theta } + \frac { 1 } { 4 } \mathrm { e } ^ { 4 \mathrm { i } \theta } + \frac { 1 } { 16 } \mathrm { e } ^ { 6 \mathrm { i } \theta } + \frac { 1 } { 64 } \mathrm { e } ^ { 8 \mathrm { i } \theta } + \ldots\). has a sum to infinity, express this sum to infinity in terms of \(\mathrm { e } ^ { 2 \mathrm { i } \theta }\)
    15
  3. Hence show that \(\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 4 ^ { n - 1 } } \cos 2 n \theta = \frac { 16 \cos 2 \theta - 4 } { 17 - 8 \cos 2 \theta }\)
    [0pt] [4 marks]
    15
  4. Deduce a similar expression for \(\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 4 ^ { n - 1 } } \sin 2 n \theta\)
    [0pt] [1 mark]
OCR Further Pure Core 2 Specimen Q10
8 marks Challenging +1.2
10 Let \(C = \sum _ { r = 0 } ^ { 20 } \binom { 20 } { r } \cos r \theta\). Show that \(C = 2 ^ { 20 } \cos ^ { 20 } \left( \frac { 1 } { 2 } \theta \right) \cos 10 \theta\).
OCR MEI Further Pure Core 2019 June Q16
12 marks Challenging +1.2
16
  1. Show that \(\left( 2 - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( 2 - \mathrm { e } ^ { - \mathrm { i } \theta } \right) = 5 - 4 \cos \theta\). Series \(C\) and \(S\) are defined by
    \(C = \frac { 1 } { 2 } \cos \theta + \frac { 1 } { 4 } \cos 2 \theta + \frac { 1 } { 8 } \cos 3 \theta + \ldots + \frac { 1 } { 2 ^ { n } } \cos n \theta\),
    \(S = \frac { 1 } { 2 } \sin \theta + \frac { 1 } { 4 } \sin 2 \theta + \frac { 1 } { 8 } \sin 3 \theta + \ldots + \frac { 1 } { 2 ^ { n } } \sin n \theta\).
  2. Show that \(C = \frac { 2 ^ { n } ( 2 \cos \theta - 1 ) - 2 \cos ( n + 1 ) \theta + \cos n \theta } { 2 ^ { n } ( 5 - 4 \cos \theta ) }\).
OCR MEI Further Pure Core 2022 June Q14
8 marks Challenging +1.2
14
  1. Find \(\left( 3 - \mathrm { e } ^ { 2 \mathrm { i } \theta } \right) \left( 3 - \mathrm { e } ^ { - 2 \mathrm { i } \theta } \right)\) in terms of \(\cos 2 \theta\).
  2. Hence show that the sum of the infinite series \(\sin \theta + \frac { 1 } { 3 } \sin 3 \theta + \frac { 1 } { 9 } \sin 5 \theta + \frac { 1 } { 27 } \sin 7 \theta + \ldots\) can be expressed as \(\frac { 6 \sin \theta } { 5 - 3 \cos 2 \theta }\).
OCR MEI Further Pure Core 2024 June Q13
10 marks Challenging +1.2
13 The complex number \(z\) is defined as \(z = \frac { 1 } { 3 } \mathrm { e } ^ { \mathrm { i } \theta }\) where \(0 < \theta < \frac { 1 } { 2 } \pi\).
On an Argand diagram, the point O represents the complex number 0 , and the points \(P _ { 1 } , P _ { 2 } , P _ { 3 } , \ldots\) represent the complex numbers \(z , z ^ { 2 } , z ^ { 3 } , \ldots\) respectively.
  1. Write down each of the following.
    1. The ratio of the lengths \(\mathrm { OP } _ { n + 1 } : \mathrm { OP } _ { n }\)
    2. The angle \(\mathrm { P } _ { n + 1 } \mathrm { OP } _ { n }\)
    1. Show that \(\left( 3 - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( 3 - \mathrm { e } ^ { - \mathrm { i } \theta } \right) = \mathrm { a } + \mathrm { b } \cos \theta\), where \(a\) and \(b\) are integers to be determined.
    2. By considering the sum to infinity of the series \(z + z ^ { 2 } + z ^ { 3 } + \ldots\), show that $$\frac { 1 } { 3 } \sin \theta + \frac { 1 } { 9 } \sin 2 \theta + \frac { 1 } { 27 } \sin 3 \theta + \ldots = \frac { 3 \sin \theta } { 10 - 6 \cos \theta } .$$
Edexcel CP2 2019 June Q4
8 marks Challenging +1.2
  1. The infinite series C and S are defined by
$$\begin{aligned} & \mathrm { C } = \cos \theta + \frac { 1 } { 2 } \cos 5 \theta + \frac { 1 } { 4 } \cos 9 \theta + \frac { 1 } { 8 } \cos 13 \theta + \ldots \\ & \mathrm { S } = \sin \theta + \frac { 1 } { 2 } \sin 5 \theta + \frac { 1 } { 4 } \sin 9 \theta + \frac { 1 } { 8 } \sin 13 \theta + \ldots \end{aligned}$$ Given that the series C and S are both convergent,
  1. show that $$\mathrm { C } + \mathrm { iS } = \frac { 2 \mathrm { e } ^ { \mathrm { i } \theta } } { 2 - \mathrm { e } ^ { 4 \mathrm { i } \theta } }$$
  2. Hence show that $$\mathrm { S } = \frac { 4 \sin \theta + 2 \sin 3 \theta } { 5 - 4 \cos 4 \theta }$$
OCR MEI FP2 2013 January Q2
18 marks Challenging +1.3
    1. Show that $$1 + \mathrm { e } ^ { \mathrm { j } 2 \theta } = 2 \cos \theta ( \cos \theta + \mathrm { j } \sin \theta )$$
    2. The series \(C\) and \(S\) are defined as follows. $$\begin{aligned} & C = 1 + \binom { n } { 1 } \cos 2 \theta + \binom { n } { 2 } \cos 4 \theta + \ldots + \cos 2 n \theta \\ & S = \binom { n } { 1 } \sin 2 \theta + \binom { n } { 2 } \sin 4 \theta + \ldots + \sin 2 n \theta \end{aligned}$$ By considering \(C + \mathrm { j } S\), show that $$C = 2 ^ { n } \cos ^ { n } \theta \cos n \theta$$ and find a corresponding expression for \(S\).
    1. Express \(\mathrm { e } ^ { \mathrm { j } 2 \pi / 3 }\) in the form \(x + \mathrm { j } y\), where the real numbers \(x\) and \(y\) should be given exactly.
    2. An equilateral triangle in the Argand diagram has its centre at the origin. One vertex of the triangle is at the point representing \(2 + 4 \mathrm { j }\). Obtain the complex numbers representing the other two vertices, giving your answers in the form \(x + \mathrm { j } y\), where the real numbers \(x\) and \(y\) should be given exactly.
    3. Show that the length of a side of the triangle is \(2 \sqrt { 15 }\).
OCR Further Pure Core 2 2018 March Q9
14 marks Challenging +1.2
9 In this question you must show detailed reasoning.
  1. Show that \(\mathrm { e } ^ { \mathrm { i } \theta } - \mathrm { e } ^ { - \mathrm { i } \theta } = 2 \mathrm { i } \sin \theta\).
  2. Hence, show that \(\frac { 2 } { \mathrm { e } ^ { 2 \mathrm { i } \theta } - 1 } = - ( 1 + \mathrm { i } \cot \theta )\).
  3. Two series, \(C\) and \(S\), are defined as follows. $$\begin{aligned} & C = 2 + 2 \cos \frac { \pi } { 10 } + 2 \cos \frac { \pi } { 5 } + 2 \cos \frac { 3 \pi } { 10 } + 2 \cos \frac { 2 \pi } { 5 } \\ & S = 2 \sin \frac { \pi } { 10 } + 2 \sin \frac { \pi } { 5 } + 2 \sin \frac { 3 \pi } { 10 } + 2 \sin \frac { 2 \pi } { 5 } \end{aligned}$$ By considering \(C + \mathrm { i } S\), find a simplified expression for \(C\) in terms of only integers and \(\cot \frac { \pi } { 20 }\).
  4. Verify that \(S = C - 2\) and, by considering the series in their original form, explain why this is so. \section*{END OF QUESTION PAPER}