- The infinite series C and S are defined by
$$\begin{aligned}
& \mathrm { C } = \cos \theta + \frac { 1 } { 2 } \cos 5 \theta + \frac { 1 } { 4 } \cos 9 \theta + \frac { 1 } { 8 } \cos 13 \theta + \ldots
& \mathrm { S } = \sin \theta + \frac { 1 } { 2 } \sin 5 \theta + \frac { 1 } { 4 } \sin 9 \theta + \frac { 1 } { 8 } \sin 13 \theta + \ldots
\end{aligned}$$
Given that the series C and S are both convergent,
- show that
$$\mathrm { C } + \mathrm { iS } = \frac { 2 \mathrm { e } ^ { \mathrm { i } \theta } } { 2 - \mathrm { e } ^ { 4 \mathrm { i } \theta } }$$
- Hence show that
$$\mathrm { S } = \frac { 4 \sin \theta + 2 \sin 3 \theta } { 5 - 4 \cos 4 \theta }$$