OCR FP3 2013 January — Question 7

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2013
SessionJanuary
TopicComplex numbers 2

7 Let \(S = \mathrm { e } ^ { \mathrm { i } \theta } + \mathrm { e } ^ { 2 \mathrm { i } \theta } + \mathrm { e } ^ { 3 \mathrm { i } \theta } + \ldots + \mathrm { e } ^ { 10 \mathrm { i } \theta }\).
  1. (a) Show that, for \(\theta \neq 2 n \pi\), where \(n\) is an integer, $$S = \frac { \mathrm { e } ^ { \frac { 1 } { 2 } \mathrm { i } \theta } \left( \mathrm { e } ^ { 10 \mathrm { i } \theta } - 1 \right) } { 2 \mathrm { i } \sin \left( \frac { 1 } { 2 } \theta \right) }$$ (b) State the value of \(S\) for \(\theta = 2 n \pi\), where \(n\) is an integer.
  2. Hence show that, for \(\theta \neq 2 n \pi\), where \(n\) is an integer, $$\cos \theta + \cos 2 \theta + \cos 3 \theta + \ldots + \cos 10 \theta = \frac { \sin \left( \frac { 21 } { 2 } \theta \right) } { 2 \sin \left( \frac { 1 } { 2 } \theta \right) } - \frac { 1 } { 2 }$$
  3. Hence show that \(\theta = \frac { 1 } { 11 } \pi\) is a root of \(\cos \theta + \cos 2 \theta + \cos 3 \theta + \ldots + \cos 10 \theta = 0\) and find another root in the interval \(0 < \theta < \frac { 1 } { 4 } \pi\).