OCR MEI FP2 2007 January — Question 2

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2007
SessionJanuary
TopicComplex numbers 2

2
  1. You are given the complex numbers \(w = 3 \mathrm { e } ^ { - \frac { 1 } { 12 } \pi \mathrm { j } }\) and \(z = 1 - \sqrt { 3 } \mathrm { j }\).
    1. Find the modulus and argument of each of the complex numbers \(w , z\) and \(\frac { w } { z }\).
    2. Hence write \(\frac { w } { z }\) in the form \(a + b \mathrm { j }\), giving the exact values of \(a\) and \(b\).
  2. In this part of the question, \(n\) is a positive integer and \(\theta\) is a real number with \(0 < \theta < \frac { \pi } { n }\).
    1. Express \(\mathrm { e } ^ { - \frac { 1 } { 2 } \mathrm { j } \theta } + \mathrm { e } ^ { \frac { 1 } { 2 } \mathrm { j } \theta }\) in simplified trigonometric form, and hence, or otherwise, show that $$1 + \mathrm { e } ^ { \mathrm { j } \theta } = 2 \mathrm { e } ^ { \frac { 1 } { 2 } \mathrm { j } \theta } \cos \frac { 1 } { 2 } \theta$$ Series \(C\) and \(S\) are defined by $$\begin{aligned} & C = 1 + \binom { n } { 1 } \cos \theta + \binom { n } { 2 } \cos 2 \theta + \binom { n } { 3 } \cos 3 \theta + \ldots + \binom { n } { n } \cos n \theta
      & S = \binom { n } { 1 } \sin \theta + \binom { n } { 2 } \sin 2 \theta + \binom { n } { 3 } \sin 3 \theta + \ldots + \binom { n } { n } \sin n \theta \end{aligned}$$
    2. Find \(C\) and \(S\), and show that \(\frac { S } { C } = \tan \frac { 1 } { 2 } n \theta\).