A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q2
OCR MEI FP2 2007 January — Question 2
Exam Board
OCR MEI
Module
FP2 (Further Pure Mathematics 2)
Year
2007
Session
January
Topic
Complex numbers 2
2
You are given the complex numbers \(w = 3 \mathrm { e } ^ { - \frac { 1 } { 12 } \pi \mathrm { j } }\) and \(z = 1 - \sqrt { 3 } \mathrm { j }\).
Find the modulus and argument of each of the complex numbers \(w , z\) and \(\frac { w } { z }\).
Hence write \(\frac { w } { z }\) in the form \(a + b \mathrm { j }\), giving the exact values of \(a\) and \(b\).
In this part of the question, \(n\) is a positive integer and \(\theta\) is a real number with \(0 < \theta < \frac { \pi } { n }\).
Express \(\mathrm { e } ^ { - \frac { 1 } { 2 } \mathrm { j } \theta } + \mathrm { e } ^ { \frac { 1 } { 2 } \mathrm { j } \theta }\) in simplified trigonometric form, and hence, or otherwise, show that $$1 + \mathrm { e } ^ { \mathrm { j } \theta } = 2 \mathrm { e } ^ { \frac { 1 } { 2 } \mathrm { j } \theta } \cos \frac { 1 } { 2 } \theta$$ Series \(C\) and \(S\) are defined by $$\begin{aligned} & C = 1 + \binom { n } { 1 } \cos \theta + \binom { n } { 2 } \cos 2 \theta + \binom { n } { 3 } \cos 3 \theta + \ldots + \binom { n } { n } \cos n \theta
& S = \binom { n } { 1 } \sin \theta + \binom { n } { 2 } \sin 2 \theta + \binom { n } { 3 } \sin 3 \theta + \ldots + \binom { n } { n } \sin n \theta \end{aligned}$$
Find \(C\) and \(S\), and show that \(\frac { S } { C } = \tan \frac { 1 } { 2 } n \theta\).
This paper
(5 questions)
View full paper
Q1
Q2
Q3
Q4
Q5