A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q16
OCR MEI Further Pure Core 2019 June — Question 16
Exam Board
OCR MEI
Module
Further Pure Core (Further Pure Core)
Year
2019
Session
June
Topic
Complex numbers 2
16
Show that \(\left( 2 - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( 2 - \mathrm { e } ^ { - \mathrm { i } \theta } \right) = 5 - 4 \cos \theta\). Series \(C\) and \(S\) are defined by
\(C = \frac { 1 } { 2 } \cos \theta + \frac { 1 } { 4 } \cos 2 \theta + \frac { 1 } { 8 } \cos 3 \theta + \ldots + \frac { 1 } { 2 ^ { n } } \cos n \theta\),
\(S = \frac { 1 } { 2 } \sin \theta + \frac { 1 } { 4 } \sin 2 \theta + \frac { 1 } { 8 } \sin 3 \theta + \ldots + \frac { 1 } { 2 ^ { n } } \sin n \theta\).
Show that \(C = \frac { 2 ^ { n } ( 2 \cos \theta - 1 ) - 2 \cos ( n + 1 ) \theta + \cos n \theta } { 2 ^ { n } ( 5 - 4 \cos \theta ) }\).
This paper
(17 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17