OCR MEI Further Pure Core 2019 June — Question 16

Exam BoardOCR MEI
ModuleFurther Pure Core (Further Pure Core)
Year2019
SessionJune
TopicComplex numbers 2

16
  1. Show that \(\left( 2 - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( 2 - \mathrm { e } ^ { - \mathrm { i } \theta } \right) = 5 - 4 \cos \theta\). Series \(C\) and \(S\) are defined by
    \(C = \frac { 1 } { 2 } \cos \theta + \frac { 1 } { 4 } \cos 2 \theta + \frac { 1 } { 8 } \cos 3 \theta + \ldots + \frac { 1 } { 2 ^ { n } } \cos n \theta\),
    \(S = \frac { 1 } { 2 } \sin \theta + \frac { 1 } { 4 } \sin 2 \theta + \frac { 1 } { 8 } \sin 3 \theta + \ldots + \frac { 1 } { 2 ^ { n } } \sin n \theta\).
  2. Show that \(C = \frac { 2 ^ { n } ( 2 \cos \theta - 1 ) - 2 \cos ( n + 1 ) \theta + \cos n \theta } { 2 ^ { n } ( 5 - 4 \cos \theta ) }\).