CAIE FP1 2015 June — Question 6

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2015
SessionJune
TopicComplex numbers 2

6 Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Use the binomial expansion of \(( 1 + z ) ^ { n }\), where \(n\) is a positive integer, to show that $$\binom { n } { 1 } \cos \theta + \binom { n } { 2 } \cos 2 \theta + \ldots + \binom { n } { n } \cos n \theta = 2 ^ { n } \cos ^ { n } \left( \frac { 1 } { 2 } \theta \right) \cos \left( \frac { 1 } { 2 } n \theta \right) - 1$$ Find $$\binom { n } { 1 } \sin \theta + \binom { n } { 2 } \sin 2 \theta + \ldots + \binom { n } { n } \sin n \theta$$