OCR Further Pure Core 2 2018 March — Question 9

Exam BoardOCR
ModuleFurther Pure Core 2 (Further Pure Core 2)
Year2018
SessionMarch
TopicComplex numbers 2

9 In this question you must show detailed reasoning.
  1. Show that \(\mathrm { e } ^ { \mathrm { i } \theta } - \mathrm { e } ^ { - \mathrm { i } \theta } = 2 \mathrm { i } \sin \theta\).
  2. Hence, show that \(\frac { 2 } { \mathrm { e } ^ { 2 \mathrm { i } \theta } - 1 } = - ( 1 + \mathrm { i } \cot \theta )\).
  3. Two series, \(C\) and \(S\), are defined as follows. $$\begin{aligned} & C = 2 + 2 \cos \frac { \pi } { 10 } + 2 \cos \frac { \pi } { 5 } + 2 \cos \frac { 3 \pi } { 10 } + 2 \cos \frac { 2 \pi } { 5 }
    & S = 2 \sin \frac { \pi } { 10 } + 2 \sin \frac { \pi } { 5 } + 2 \sin \frac { 3 \pi } { 10 } + 2 \sin \frac { 2 \pi } { 5 } \end{aligned}$$ By considering \(C + \mathrm { i } S\), find a simplified expression for \(C\) in terms of only integers and \(\cot \frac { \pi } { 20 }\).
  4. Verify that \(S = C - 2\) and, by considering the series in their original form, explain why this is so. \section*{END OF QUESTION PAPER}