Method of differences with given identity

A question is this type if and only if it provides or asks to verify an algebraic identity f(r+1) - f(r) = g(r), then uses this to sum Σg(r) by telescoping.

39 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2021 June Q2
9 marks Challenging +1.2
2
  1. Use standard results from the List of formulae (MF19) to find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \left( 1 - \mathrm { r } - \mathrm { r } ^ { 2 } \right)\) in terms of \(n\),
    simplifying your answer. simplifying your answer.
  2. Show that $$\frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) } = \frac { r + 1 } { ( r + 1 ) ^ { 2 } + 1 } - \frac { r } { r ^ { 2 } + 1 }$$ and hence use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) }\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) }\).
CAIE Further Paper 1 2022 June Q1
7 marks Standard +0.8
1 Let \(a\) be a positive constant.
  1. Use the method of differences to find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \frac { 1 } { ( \mathrm { ar } + 1 ) ( \mathrm { ar } + \mathrm { a } + 1 ) }\) in terms of \(n\) and \(a\).
  2. Find the value of \(a\) for which \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( a r + 1 ) ( a r + a + 1 ) } = \frac { 1 } { 6 }\).
CAIE Further Paper 1 2023 November Q1
9 marks Standard +0.8
1
  1. Use standard results from the list of formulae (MF19) to find \(\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 2 } + 3 r + 1 \right)\) in terms of \(n\), simplifying your answer.
  2. Show that $$\frac { 1 } { r ^ { 3 } } - \frac { 1 } { ( r + 1 ) ^ { 3 } } = \frac { 3 r ^ { 2 } + 3 r + 1 } { r ^ { 3 } ( r + 1 ) ^ { 3 } }$$ and hence use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 3 r ^ { 2 } + 3 r + 1 } { r ^ { 3 } ( r + 1 ) ^ { 3 } }\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 3 r ^ { 2 } + 3 r + 1 } { r ^ { 3 } ( r + 1 ) ^ { 3 } }\).
CAIE Further Paper 1 2020 Specimen Q1
6 marks Standard +0.3
1
  1. Gie it h \(\mathrm { f } ( r ) = \frac { 1 } { ( r + 1 ) ( r + 2 ) } , \mathrm { s }\) th t $$\mathrm { f } \left( r - 1 \quad \mathrm { f } ( r ) = \frac { 2 } { r ( r + 1 ) ( r + 2 ) } \right.$$
  2. Hen e fid \(\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }\).
  3. Ded e th le \(6 \sum _ { r = 1 } ^ { \infty } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }\).
Edexcel F2 2021 January Q2
6 marks Standard +0.3
2. (a) Show that, for \(r > 0\) $$\frac { r + 2 } { r ( r + 1 ) } - \frac { r + 3 } { ( r + 1 ) ( r + 2 ) } = \frac { r + 4 } { r ( r + 1 ) ( r + 2 ) }$$ (b) Hence show that $$\sum _ { r = 1 } ^ { n } \frac { r + 4 } { r ( r + 1 ) ( r + 2 ) } = \frac { n ( a n + b ) } { c ( n + 1 ) ( n + 2 ) }$$ where \(a\), \(b\) and \(c\) are integers to be determined.
Edexcel F2 2023 January Q2
6 marks Standard +0.3
  1. (a) Express
$$\frac { 1 } { ( 2 n - 1 ) ( 2 n + 1 ) ( 2 n + 3 ) }$$ in partial fractions.
(b) Hence, using the method of differences, show that for all integer values of \(n\), $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r - 1 ) ( 2 r + 1 ) ( 2 r + 3 ) } = \frac { n ( n + 2 ) } { a ( 2 n + b ) ( 2 n + c ) }$$ where \(a\), \(b\) and \(c\) are integers to be determined.
Edexcel F2 2014 June Q1
6 marks Standard +0.3
  1. (a) Show that
$$\frac { 1 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) } \equiv \frac { 1 } { 2 ( r + 1 ) ( r + 2 ) } - \frac { 1 } { 2 ( r + 2 ) ( r + 3 ) }$$ (b) Hence, or otherwise, find $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) }$$ giving your answer as a single fraction in its simplest form.
Edexcel FP2 2003 June Q4
5 marks Standard +0.8
4. (a) Express as a simplified single fraction \(\frac { 1 } { ( r - 1 ) ^ { 2 } } - \frac { 1 } { r ^ { 2 } }\).
(b) Hence prove, by the method of differences, that \(\quad \sum _ { r = 2 } ^ { n } \frac { 2 r - 1 } { r ^ { 2 } ( r - 1 ) ^ { 2 } } = 1 - \frac { 1 } { n ^ { 2 } }\).
Edexcel FP2 2014 June Q1
5 marks Standard +0.8
  1. (a) Express \(\frac { 2 } { 4 r ^ { 2 } - 1 }\) in partial fractions.
    (b) Hence use the method of differences to show that
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }$$
Edexcel FP2 2016 June Q2
7 marks Standard +0.8
2. (a) Show that, for \(r > 0\) $$r - 3 + \frac { 1 } { r + 1 } - \frac { 1 } { r + 2 } = \frac { r ^ { 3 } - 7 r - 5 } { ( r + 1 ) ( r + 2 ) }$$ (b) Hence prove, using the method of differences, that $$\sum _ { r = 1 } ^ { n } \frac { r ^ { 3 } - 7 r - 5 } { ( r + 1 ) ( r + 2 ) } = \frac { n \left( n ^ { 2 } + a n + b \right) } { 2 ( n + 2 ) }$$ where \(a\) and \(b\) are constants to be found.
Edexcel FP2 Specimen Q2
5 marks Standard +0.8
  1. (a) Express as a simplified single fraction \(\frac { 1 } { r ^ { 2 } } - \frac { 1 } { ( r + 1 ) ^ { 2 } }\) (b) Hence prove, by the method of differences, that
$$\sum _ { r = 1 } ^ { n } \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } = 1 - \frac { 1 } { ( n + 1 ) ^ { 2 } }$$
OCR FP1 2013 June Q9
8 marks Standard +0.3
9
  1. Show that \(\frac { 1 } { 3 r - 1 } - \frac { 1 } { 3 r + 2 } \equiv \frac { 3 } { ( 3 r - 1 ) ( 3 r + 2 ) }\).
  2. Hence show that \(\sum _ { r = 1 } ^ { 2 n } \frac { 1 } { ( 3 r - 1 ) ( 3 r + 2 ) } = \frac { n } { 2 ( 3 n + 1 ) }\).
OCR MEI FP1 2005 January Q2
6 marks Moderate -0.5
2
  1. Show that \(\frac { 1 } { r + 1 } - \frac { 1 } { r + 2 } = \frac { 1 } { ( r + 1 ) ( r + 2 ) }\).
  2. Hence use the method of differences to find the sum of the series $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 2 ) }$$
OCR MEI FP1 2008 June Q7
7 marks Standard +0.3
7
  1. Show that \(\frac { 1 } { 3 r - 1 } - \frac { 1 } { 3 r + 2 } \equiv \frac { 3 } { ( 3 r - 1 ) ( 3 r + 2 ) }\) for all integers \(r\).
  2. Hence use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 3 r - 1 ) ( 3 r + 2 ) }\). Section B (36 marks)
OCR MEI FP1 2009 June Q5
6 marks Standard +0.3
5
  1. Show that \(\frac { 1 } { 5 r - 2 } - \frac { 1 } { 5 r + 3 } \equiv \frac { 5 } { ( 5 r - 2 ) ( 5 r + 3 ) }\) for all integers \(r\).
  2. Hence use the method of differences to show that \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 5 r - 2 ) ( 5 r + 3 ) } = \frac { n } { 3 ( 5 n + 3 ) }\).
OCR MEI FP1 2010 June Q5
6 marks Standard +0.3
5 Use the result \(\frac { 1 } { 5 r - 1 } - \frac { 1 } { 5 r + 4 } \equiv \frac { 5 } { ( 5 r - 1 ) ( 5 r + 4 ) }\) and the method of differences to find $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 5 r - 1 ) ( 5 r + 4 ) }$$ simplifying your answer.
OCR MEI FP1 2011 June Q5
5 marks Standard +0.3
5 Given that \(\frac { 3 } { ( 3 r - 1 ) ( 3 r + 2 ) } \equiv \frac { 1 } { 3 r - 1 } - \frac { 1 } { 3 r + 2 }\), find \(\sum _ { r = 1 } ^ { 20 } \frac { 1 } { ( 3 r - 1 ) ( 3 r + 2 ) }\), giving your answer as an exact fraction.
OCR MEI FP1 2012 June Q5
7 marks Standard +0.3
5
  1. Show that \(\frac { 1 } { 2 r + 1 } - \frac { 1 } { 2 r + 3 } \equiv \frac { 2 } { ( 2 r + 1 ) ( 2 r + 3 ) }\).
  2. Use the method of differences to find \(\sum _ { r = 1 } ^ { 30 } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }\), expressing your answer as a fraction.
OCR MEI FP1 2013 June Q5
6 marks Standard +0.3
5 You are given that \(\frac { 4 } { ( 4 n - 3 ) ( 4 n + 1 ) } \equiv \frac { 1 } { 4 n - 3 } - \frac { 1 } { 4 n + 1 }\). Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 4 r - 3 ) ( 4 r + 1 ) } = \frac { n } { 4 n + 1 }$$
OCR MEI FP1 2014 June Q4
5 marks Standard +0.3
4 Use the identity \(\frac { 1 } { 2 r + 3 } - \frac { 1 } { 2 r + 5 } \equiv \frac { 2 } { ( 2 r + 3 ) ( 2 r + 5 ) }\) and the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r + 3 ) ( 2 r + 5 ) }\), expressing your answer as a single fraction.
AQA Further AS Paper 1 2018 June Q15
4 marks Moderate -0.3
15 (b) Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 2 ) ( r + 3 ) } = \frac { n } { 3 ( n + 3 ) }$$
\multirow[t]{26}{*}{16}Two matrices \(\mathbf { A }\) and \(\mathbf { B }\) satisfy the equation
Find \(\mathbf { A }\).
Find the exact solution to the equation $$\sinh \theta ( \sinh \theta + \cosh \theta ) = 1$$
18
\(\alpha , \beta\) and \(\gamma\) are the real roots of the cubic equation \(x ^ { 3 } + m x ^ { 2 } + n x + 2 = 0\)
By considering \(( \alpha - \beta ) ^ { 2 } + ( \gamma - \alpha ) ^ { 2 } + ( \beta - \gamma ) ^ { 2 }\), prove that \(m ^ { 2 } \geq 3 n\)
AQA Further AS Paper 1 2023 June Q7
7 marks Standard +0.3
7
  1. Show that, for all integers \(r\), $$\frac { 1 } { 2 r - 1 } - \frac { 1 } { 2 r + 1 } = \frac { 2 } { ( 2 r - 1 ) ( 2 r + 1 ) }$$ 7
  2. Hence, using the method of differences, show that $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r - 1 ) ( 2 r + 1 ) } = \frac { a n } { b n + c }$$ where \(a\), \(b\) and \(c\) are integers to be determined.
    7
  3. Hence, or otherwise, evaluate $$\frac { 1 } { 1 \times 3 } + \frac { 1 } { 3 \times 5 } + \frac { 1 } { 5 \times 7 } + \ldots + \frac { 1 } { 99 \times 101 }$$
AQA Further Paper 1 Specimen Q3
6 marks Challenging +1.2
3
0
2 \end{array} \right] \quad \left[ \begin{array} { c } 5
- 1
3 \end{array} \right] \quad \left[ \begin{array} { l } 2
1
1 \end{array} \right]$$ 2 Use the definitions of \(\cosh x\) and \(\sinh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\) to show that \(\cosh ^ { 2 } x - \sinh ^ { 2 } x \equiv 1\)\\[0pt] [2 marks]\\ 3
  1. Given that $$\frac { 2 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) } \equiv \frac { A } { ( r + 1 ) ( r + 2 ) } + \frac { B } { ( r + 2 ) ( r + 3 ) }$$ find the values of the integers \(A\) and \(B\)\\ 3
  2. Use the method of differences to show clearly that $$\sum _ { r = 9 } ^ { 97 } \frac { 1 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) } = \frac { 89 } { 19800 }$$
OCR Further Pure Core 2 2024 June Q1
5 marks Moderate -0.5
1
  1. Use the method of differences to show that \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \left( \frac { 1 } { \mathrm { r } } - \frac { 1 } { \mathrm { r } + 1 } \right) = 1 - \frac { 1 } { \mathrm { n } + 1 }\).
  2. Hence determine the following sums.
    1. \(\quad \sum _ { r = 1 } ^ { 99 } \frac { 1 } { r } - \frac { 1 } { r + 1 }\)
    2. \(\quad \sum _ { r = 100 } ^ { \infty } \frac { 1 } { r } - \frac { 1 } { r + 1 }\)
WJEC Further Unit 1 2018 June Q5
8 marks Standard +0.3
5. (a) Show that \(\frac { 2 } { n - 1 } - \frac { 2 } { n + 1 }\) can be expressed as \(\frac { 4 } { \left( n ^ { 2 } - 1 \right) }\).
(b) Hence, find an expression for \(\sum _ { r = 2 } ^ { n } \frac { 4 } { \left( r ^ { 2 } - 1 \right) }\) in the form \(\frac { ( a n + b ) ( n + c ) } { n ( n + 1 ) }\), where \(a , b , c\) are integers whose values are to be determined.
(c) Explain why \(\sum _ { r = 1 } ^ { 100 } \frac { 4 } { \left( r ^ { 2 } - 1 \right) }\) cannot be calculated.