AQA Further Paper 1 Specimen — Question 3 2 marks

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
SessionSpecimen
Marks2
TopicSequences and series, recurrence and convergence

3
0
2 \end{array} \right] \quad \left[ \begin{array} { c } 5
- 1
3 \end{array} \right] \quad \left[ \begin{array} { l } 2
1
1 \end{array} \right]$$ 2 Use the definitions of \(\cosh x\) and \(\sinh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\) to show that \(\cosh ^ { 2 } x - \sinh ^ { 2 } x \equiv 1\)
[0pt] [2 marks]
3
  1. Given that $$\frac { 2 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) } \equiv \frac { A } { ( r + 1 ) ( r + 2 ) } + \frac { B } { ( r + 2 ) ( r + 3 ) }$$ find the values of the integers \(A\) and \(B\)
    3
  2. Use the method of differences to show clearly that $$\sum _ { r = 9 } ^ { 97 } \frac { 1 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) } = \frac { 89 } { 19800 }$$