CAIE Further Paper 1 2023 November — Question 1

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2023
SessionNovember
TopicSequences and series, recurrence and convergence

1
  1. Use standard results from the list of formulae (MF19) to find \(\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 2 } + 3 r + 1 \right)\) in terms of \(n\), simplifying your answer.
  2. Show that $$\frac { 1 } { r ^ { 3 } } - \frac { 1 } { ( r + 1 ) ^ { 3 } } = \frac { 3 r ^ { 2 } + 3 r + 1 } { r ^ { 3 } ( r + 1 ) ^ { 3 } }$$ and hence use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 3 r ^ { 2 } + 3 r + 1 } { r ^ { 3 } ( r + 1 ) ^ { 3 } }\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 3 r ^ { 2 } + 3 r + 1 } { r ^ { 3 } ( r + 1 ) ^ { 3 } }\).