AQA Further AS Paper 1 2023 June — Question 7

Exam BoardAQA
ModuleFurther AS Paper 1 (Further AS Paper 1)
Year2023
SessionJune
TopicSequences and series, recurrence and convergence

7
  1. Show that, for all integers \(r\), $$\frac { 1 } { 2 r - 1 } - \frac { 1 } { 2 r + 1 } = \frac { 2 } { ( 2 r - 1 ) ( 2 r + 1 ) }$$ 7
  2. Hence, using the method of differences, show that $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r - 1 ) ( 2 r + 1 ) } = \frac { a n } { b n + c }$$ where \(a\), \(b\) and \(c\) are integers to be determined.
    7
  3. Hence, or otherwise, evaluate $$\frac { 1 } { 1 \times 3 } + \frac { 1 } { 3 \times 5 } + \frac { 1 } { 5 \times 7 } + \ldots + \frac { 1 } { 99 \times 101 }$$