OCR MEI FP1 2013 June — Question 5

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionJune
TopicSequences and series, recurrence and convergence

5 You are given that \(\frac { 4 } { ( 4 n - 3 ) ( 4 n + 1 ) } \equiv \frac { 1 } { 4 n - 3 } - \frac { 1 } { 4 n + 1 }\). Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 4 r - 3 ) ( 4 r + 1 ) } = \frac { n } { 4 n + 1 }$$