A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q1
OCR Further Pure Core 2 2024 June — Question 1
Exam Board
OCR
Module
Further Pure Core 2 (Further Pure Core 2)
Year
2024
Session
June
Topic
Sequences and series, recurrence and convergence
1
Use the method of differences to show that \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \left( \frac { 1 } { \mathrm { r } } - \frac { 1 } { \mathrm { r } + 1 } \right) = 1 - \frac { 1 } { \mathrm { n } + 1 }\).
Hence determine the following sums.
\(\quad \sum _ { r = 1 } ^ { 99 } \frac { 1 } { r } - \frac { 1 } { r + 1 }\)
\(\quad \sum _ { r = 100 } ^ { \infty } \frac { 1 } { r } - \frac { 1 } { r + 1 }\)
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q9