OCR MEI FP1 2009 June — Question 5

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionJune
TopicSequences and series, recurrence and convergence

5
  1. Show that \(\frac { 1 } { 5 r - 2 } - \frac { 1 } { 5 r + 3 } \equiv \frac { 5 } { ( 5 r - 2 ) ( 5 r + 3 ) }\) for all integers \(r\).
  2. Hence use the method of differences to show that \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 5 r - 2 ) ( 5 r + 3 ) } = \frac { n } { 3 ( 5 n + 3 ) }\).