A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q5
OCR MEI FP1 2009 June — Question 5
Exam Board
OCR MEI
Module
FP1 (Further Pure Mathematics 1)
Year
2009
Session
June
Topic
Sequences and series, recurrence and convergence
5
Show that \(\frac { 1 } { 5 r - 2 } - \frac { 1 } { 5 r + 3 } \equiv \frac { 5 } { ( 5 r - 2 ) ( 5 r + 3 ) }\) for all integers \(r\).
Hence use the method of differences to show that \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 5 r - 2 ) ( 5 r + 3 ) } = \frac { n } { 3 ( 5 n + 3 ) }\).
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9