Find P and D for A = PDP⁻¹

Questions asking to find matrices P and diagonal matrix D such that A = PDP⁻¹ (standard diagonalization of matrix A)

26 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2021 June Q8
13 marks Standard +0.8
8
  1. Find the value of \(a\) for which the system of equations $$\begin{array} { r } 13 x + 18 y - 28 z = 0 \\ - 4 x - a y + 8 z = 0 \\ 2 x + 6 y - 5 z = 0 \end{array}$$ does not have a unique solution.
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 13 & 18 & - 28 \\ - 4 & - 1 & 8 \\ 2 & 6 & - 5 \end{array} \right)$$
  2. Find the eigenvalue of \(\mathbf { A }\) corresponding to the eigenvector \(\left( \begin{array} { l } 2 \\ 0 \\ 1 \end{array} \right)\).
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } = \mathbf { P D P } ^ { - 1 }\).
  4. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\) in terms of \(\mathbf { A }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 2 2020 November Q7
9 marks Standard +0.8
7 The matrix \(\mathbf { P }\) is given by $$\mathbf { P } = \left( \begin{array} { r r r } 1 & 4 & 2 \\ 0 & - 1 & 1 \\ 0 & 0 & 2 \end{array} \right) .$$
  1. State the eigenvalues of \(\mathbf { P }\).
  2. Use the characteristic equation of \(\mathbf { P }\) to find \(\mathbf { P } ^ { - 1 }\).
    The \(3 \times 3\) matrix \(\mathbf { A }\) has distinct eigenvalues \(b , - 1,1\) with corresponding eigenvectors $$\left( \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right) , \quad \left( \begin{array} { r } 4 \\ - 1 \\ 0 \end{array} \right) , \quad \left( \begin{array} { l } 2 \\ 1 \\ 2 \end{array} \right)$$ respectively.
  3. Find \(\mathbf { A }\) in terms of b.
CAIE Further Paper 2 2020 November Q9
16 marks Standard +0.8
9 It is given that \(a\) is a positive constant.
  1. Show that the system of equations $$\begin{aligned} a x + ( 2 a + 5 ) y + ( a + 1 ) z & = 1 \\ - 4 y & = 2 \\ 3 y - z & = 3 \end{aligned}$$ has a unique solution and interpret this situation geometrically.
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { c c c } a & 2 a + 5 & a + 1 \\ 0 & - 4 & 0 \\ 0 & 3 & - 1 \end{array} \right)$$
  2. Show that the eigenvalues of \(\mathbf { A }\) are \(a , - 1\) and - 4 .
  3. Find a matrix \(\mathbf { P }\) such that $$\mathbf { A } = \mathbf { P } \left( \begin{array} { r r r } a & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 4 \end{array} \right) \mathbf { P } ^ { - 1 } .$$
  4. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
OCR MEI FP2 2008 January Q3
18 marks Standard +0.3
3 You are given the matrix \(\mathbf { M } = \left( \begin{array} { r r } 7 & 3 \\ - 4 & - 1 \end{array} \right)\).
  1. Find the eigenvalues, and corresponding eigenvectors, of the matrix \(\mathbf { M }\).
  2. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { M P } = \mathbf { D }\).
  3. Given that \(\mathbf { M } ^ { n } = \left( \begin{array} { l l } a & b \\ c & d \end{array} \right)\), show that \(a = - \frac { 1 } { 2 } + \frac { 3 } { 2 } \times 5 ^ { n }\), and find similar expressions for \(b , c\) and \(d\). Section B (18 marks)
OCR MEI FP2 2013 January Q3
18 marks Standard +0.3
3 You are given the matrix \(\mathbf { M } = \left( \begin{array} { r r r } 1 & 3 & 0 \\ 3 & - 2 & - 1 \\ 0 & - 1 & 1 \end{array} \right)\).
  1. Show that the characteristic equation of \(\mathbf { M }\) is $$\lambda ^ { 3 } - 13 \lambda + 12 = 0 .$$
  2. Find the eigenvalues and corresponding eigenvectors of \(\mathbf { M }\).
  3. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { M } ^ { n } = \mathbf { P D P } ^ { - 1 } .$$ (You are not required to calculate \(\mathbf { P } ^ { - 1 }\).)
OCR MEI FP2 2014 June Q3
18 marks Standard +0.3
3
    1. Find the eigenvalues and corresponding eigenvectors for the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { l l } 6 & - 3 \\ 4 & - 1 \end{array} \right)$$
    2. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } = \mathbf { P D P } ^ { - 1 }\).
    1. The \(3 \times 3\) matrix \(\mathbf { B }\) has characteristic equation $$\lambda ^ { 3 } - 4 \lambda ^ { 2 } - 3 \lambda - 10 = 0$$ Show that 5 is an eigenvalue of \(\mathbf { B }\). Show that \(\mathbf { B }\) has no other real eigenvalues.
    2. An eigenvector corresponding to the eigenvalue 5 is \(\left( \begin{array} { r } - 2 \\ 1 \\ 4 \end{array} \right)\). Evaluate \(\mathbf { B } \left( \begin{array} { r } - 2 \\ 1 \\ 4 \end{array} \right)\) and \(\mathbf { B } ^ { 2 } \left( \begin{array} { r } 4 \\ - 2 \\ - 8 \end{array} \right)\).
      Solve the equation \(\mathbf { B } \left( \begin{array} { l } x \\ y \\ z \end{array} \right) = \left( \begin{array} { r } - 20 \\ 10 \\ 40 \end{array} \right)\) for \(x , y , z\).
    3. Show that \(\mathbf { B } ^ { 4 } = 19 \mathbf { B } ^ { 2 } + 22 \mathbf { B } + 40 \mathbf { I }\).
CAIE FP1 2010 June Q8
10 marks Standard +0.3
8 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 4 & 1 & - 1 \\ - 4 & - 1 & 4 \\ 0 & - 1 & 5 \end{array} \right)$$ Given that one eigenvector of \(\mathbf { A }\) is \(\left( \begin{array} { r } 1 \\ - 2 \\ - 1 \end{array} \right)\), find the corresponding eigenvalue. Given also that another eigenvalue of \(\mathbf { A }\) is 4, find a corresponding eigenvector. Given further that \(\left( \begin{array} { r } 1 \\ - 4 \\ - 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\), with corresponding eigenvalue 1 , find matrices \(\mathbf { P }\) and \(\mathbf { Q }\), together with a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { A } ^ { 5 } = \mathbf { P D Q }\).
CAIE FP1 2015 June Q10
12 marks Challenging +1.2
10 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 2 & - 3 \\ 2 & 2 & 3 \\ - 3 & 3 & 3 \end{array} \right)$$ The matrix \(\mathbf { A }\) has an eigenvector \(\left( \begin{array} { r } 1 \\ - 1 \\ 1 \end{array} \right)\). Find the corresponding eigenvalue. The matrix \(\mathbf { A }\) also has eigenvalues 4 and 6. Find corresponding eigenvectors. Hence find a matrix \(\mathbf { P }\) such that \(\mathbf { A } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\), where \(\mathbf { D }\) is a diagonal matrix which is to be determined. The matrix \(\mathbf { B }\) is such that \(\mathbf { B } = \mathbf { Q A Q } ^ { - 1 }\), where $$\mathbf { Q } = \left( \begin{array} { r r r } 4 & 11 & 5 \\ 1 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right)$$ By using the expression \(\mathbf { P D P } ^ { - 1 }\) for \(\mathbf { A }\), find the set of eigenvalues and a corresponding set of eigenvectors for \(\mathbf { B }\).
[0pt] [Question 11 is printed on the next page.]
CAIE FP1 2016 June Q10
12 marks Standard +0.8
10 Write down the eigenvalues of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } - 2 & 1 & - 1 \\ 0 & - 1 & 2 \\ 0 & 0 & 1 \end{array} \right)$$ and find corresponding eigenvectors. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\), and hence find the matrix \(\mathbf { A } ^ { n }\), where \(n\) is a positive integer.
[0pt] [Question 11 is printed on the next page.]
CAIE FP1 2017 June Q10
13 marks Standard +0.8
10 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { l l l } 6 & - 8 & 7 \\ 7 & - 9 & 7 \\ 6 & - 6 & 5 \end{array} \right)$$
  1. Given that \(\left( \begin{array} { l } 1 \\ 1 \\ 0 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\), find the corresponding eigenvalue.
  2. Given also that - 1 is an eigenvalue of \(\mathbf { A }\), find a corresponding eigenvector.
  3. It is given that the determinant of \(\mathbf { A }\) is equal to the product of the eigenvalues of \(\mathbf { A }\). Use this result to find the third eigenvalue of \(\mathbf { A }\), and find also a corresponding eigenvector.
  4. Write down matrices \(\mathbf { P }\) and \(\mathbf { D }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\), where \(\mathbf { D }\) is a diagonal matrix, and hence find the matrix \(\mathbf { A } ^ { n }\) in terms of \(n\), where \(n\) is a positive integer.
CAIE FP1 2018 June Q11 OR
Challenging +1.8
It is given that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\).
  1. Write down another eigenvector of \(\mathbf { A }\) corresponding to \(\lambda\).
  2. Write down an eigenvector and corresponding eigenvalue of \(\mathbf { A } ^ { n }\), where \(n\) is a positive integer.
    Let \(\mathbf { A } = \left( \begin{array} { l l l } 3 & 0 & 0 \\ 2 & 7 & 0 \\ 4 & 8 & 1 \end{array} \right)\).
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { n } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
  4. Determine the set of values of the real constant \(k\) such that $$\sum _ { n = 1 } ^ { \infty } k ^ { n } \left( \mathbf { A } ^ { n } - k \mathbf { A } ^ { n + 1 } \right) = k \mathbf { A } .$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2012 November Q10
13 marks Standard +0.8
10 Write down the eigenvalues of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 4 & - 16 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{array} \right)$$ Find corresponding eigenvectors. Let \(n\) be a positive integer. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { A } ^ { n } = \mathbf { P D P } \mathbf { P } ^ { - 1 }$$ Find \(\mathbf { P } ^ { - 1 }\) and \(\mathbf { A } ^ { n }\). Hence find \(\lim _ { n \rightarrow \infty } \left( 3 ^ { - n } \mathbf { A } ^ { n } \right)\).
CAIE FP1 2019 November Q8
10 marks Standard +0.8
8 The matrix \(\mathbf { M }\) is defined by $$\mathbf { M } = \left( \begin{array} { c c c } 2 & m & 1 \\ 0 & m & 7 \\ 0 & 0 & 1 \end{array} \right) ,$$ where \(m \neq 0,1,2\).
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { M } = \mathbf { P D P } ^ { - 1 }\).
  2. Find \(\mathbf { M } ^ { 7 } \mathbf { P }\).
CAIE FP1 2012 November Q10
13 marks Standard +0.8
10 Write down the eigenvalues of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 4 & - 16 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{array} \right)$$ Find corresponding eigenvectors. Let \(n\) be a positive integer. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { A } ^ { n } = \mathbf { P D } \mathbf { P } ^ { - 1 }$$ Find \(\mathbf { P } ^ { - 1 }\) and \(\mathbf { A } ^ { n }\). Hence find \(\lim _ { n \rightarrow \infty } \left( 3 ^ { - n } \mathbf { A } ^ { n } \right)\).
CAIE FP1 2015 November Q6
10 marks Standard +0.3
6 The matrix A, where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 0 & 0 \\ 10 & - 7 & 10 \\ 7 & - 5 & 8 \end{array} \right)$$ has eigenvalues 1 and 3. Find corresponding eigenvectors. It is given that \(\left( \begin{array} { l } 0 \\ 2 \\ 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\). Find the corresponding eigenvalue. Find a diagonal matrix \(\mathbf { D }\) and matrices \(\mathbf { P }\) and \(\mathbf { P } ^ { - 1 }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\).
OCR MEI Further Extra Pure 2024 June Q4
15 marks Standard +0.8
4 The matrix \(\mathbf { P }\) is given by \(\mathbf { P } = \left( \begin{array} { r r r } 1 & 7 & 8 \\ - 6 & 12 & 12 \\ - 2 & 4 & 8 \end{array} \right)\).
  1. Show that the characteristic equation of \(\mathbf { P }\) is \(- \lambda ^ { 3 } + 21 \lambda ^ { 2 } - 126 \lambda + 216 = 0\). You are given that the roots of this equation are 3,6 and 12 .
    1. Verify that \(\left( \begin{array} { r } 1 \\ - 2 \\ 2 \end{array} \right)\) is an eigenvector of \(\mathbf { P }\), stating its associated eigenvalue.
    2. The vector \(\left( \begin{array} { l } x \\ y \\ z \end{array} \right)\) is an eigenvector of \(\mathbf { P }\) with eigenvalue 6. Given that \(z = 5\), find \(x\) and \(y\). You are given that \(\mathbf { P }\) can be expressed in the form \(\mathbf { E D E } ^ { - 1 }\), where \(\mathbf { E } = \left( \begin{array} { r r r } 3 & 2 & 1 \\ 1 & 2 & - 2 \\ 1 & 1 & 2 \end{array} \right)\) and \(\mathbf { D }\) is a diagonal matrix. The characteristic equation of \(\mathbf { E }\) is \(- \lambda ^ { 3 } + 7 \lambda ^ { 2 } - 15 \lambda + 9 = 0\).
    1. Use the Cayley-Hamilton theorem to express \(\mathbf { E } ^ { - 1 }\) in terms of positive powers of \(\mathbf { E }\).
    2. Hence find \(\mathbf { E } ^ { - 1 }\).
    3. By identifying the matrix \(\mathbf { D }\) and using \(\mathbf { P } = \mathbf { E D E } ^ { - 1 }\), determine \(\mathbf { P } ^ { 4 }\).
OCR MEI Further Extra Pure 2021 November Q3
14 marks Standard +0.3
3 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { l l l } 3 & 3 & 0 \\ 0 & 2 & 2 \\ 1 & 3 & 4 \end{array} \right)\).
  1. Determine the characteristic equation of \(\mathbf { A }\).
  2. Hence verify that the eigenvalues of \(\mathbf { A }\) are 1, 2 and 6 .
  3. For each eigenvalue of \(\mathbf { A }\) determine an associated eigenvector.
  4. Use the results of parts (b) and (c) to find \(\mathbf { A } ^ { n }\) as a single matrix, where \(n\) is a positive integer.
Edexcel FP2 AS 2018 June Q4
7 marks Standard +0.3
4. $$\mathbf { A } = \left( \begin{array} { r r } 1 & 1 \\ - 2 & 4 \end{array} \right)$$ Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { D } = \mathbf { P } ^ { - 1 } \mathbf { A P }\)
Edexcel FP2 AS 2022 June Q2
7 marks Standard +0.3
  1. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.
$$\mathbf { M } = \left( \begin{array} { r r } 4 & 2 \\ 3 & - 1 \end{array} \right)$$ Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { P } ^ { - 1 } \mathbf { M P } = \mathbf { D }$$
Edexcel FP2 2019 June Q2
11 marks Challenging +1.2
  1. The matrix \(\mathbf { A }\) is given by
$$\mathbf { A } = \left( \begin{array} { r r r } 6 & - 2 & 2 \\ - 2 & 3 & - 1 \\ 2 & - 1 & 3 \end{array} \right)$$
  1. Show that 2 is a repeated eigenvalue of \(\mathbf { A }\) and find the other eigenvalue.
  2. Hence find three non-parallel eigenvectors of \(\mathbf { A }\).
  3. Find a matrix \(\mathbf { P }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P }\) is a diagonal matrix.
Edexcel FP2 2021 June Q8
17 marks Challenging +1.2
8. $$\mathbf { A } = \left( \begin{array} { r r r } 5 & - 2 & 5 \\ 0 & 3 & p \\ - 6 & 6 & - 4 \end{array} \right) \quad \text { where } p \text { is a constant }$$ Given that \(\left( \begin{array} { r } 2 \\ 1 \\ - 2 \end{array} \right)\) is an eigenvector for \(\mathbf { A }\)
    1. determine the eigenvalue corresponding to this eigenvector
    2. hence show that \(p = 2\)
    3. determine the remaining eigenvalues and corresponding eigenvectors of \(\mathbf { A }\)
  1. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } = \mathbf { P D P } ^ { - 1 }\)
    1. Solve the differential equation \(\dot { u } = k u\), where \(k\) is a constant. With respect to a fixed origin \(O\), the velocity of a particle moving through space is modelled by $$\left( \begin{array} { c } \dot { x } \\ \dot { y } \\ \dot { z } \end{array} \right) = \mathbf { A } \left( \begin{array} { l } x \\ y \\ z \end{array} \right)$$ By considering \(\left( \begin{array} { c } u \\ v \\ w \end{array} \right) = \mathbf { P } ^ { - 1 } \left( \begin{array} { c } x \\ y \\ z \end{array} \right)\) so that \(\left( \begin{array} { c } \dot { u } \\ \dot { v } \\ \dot { w } \end{array} \right) = \mathbf { P } ^ { - 1 } \left( \begin{array} { c } \dot { x } \\ \dot { y } \\ \dot { z } \end{array} \right)\)
    2. determine a general solution for the displacement of the particle.
Edexcel FP2 2024 June Q4
12 marks Standard +0.3
4. $$\mathbf { A } = \left( \begin{array} { r r r } 4 & 2 & 0 \\ 2 & p & - 2 \\ 0 & - 2 & 2 \end{array} \right) \quad \text { where } p \text { is a constant }$$ Given that \(\left( \begin{array} { r } 2 \\ - 1 \\ 2 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\),
  1. determine the eigenvalue corresponding to this eigenvector.
  2. Hence show that \(p = 3\)
  3. Determine
    1. the remaining eigenvalues of \(\mathbf { A }\),
    2. corresponding eigenvectors for these eigenvalues.
  4. Hence determine a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } = \mathbf { P D P } ^ { \mathrm { T } }\)
Edexcel FP2 Specimen Q3
10 marks Standard +0.3
  1. The matrix \(\mathbf { M }\) is given by
$$\mathbf { M } = \left( \begin{array} { r r r } 2 & 1 & 0 \\ 1 & 2 & 0 \\ - 1 & 0 & 4 \end{array} \right)$$
  1. Show that 4 is an eigenvalue of \(\mathbf { M }\), and find the other two eigenvalues.
  2. For each of the eigenvalues find a corresponding eigenvector.
  3. Find a matrix \(\mathbf { P }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { M P }\) is a diagonal matrix.
AQA Further Paper 1 2023 June Q6
11 marks Standard +0.3
6 The matrix \(\mathbf { M }\) is given by $$\mathbf { M } = \frac { 1 } { 10 } \left[ \begin{array} { c c c } a & a & - 6 \\ 0 & 10 & 0 \\ 9 & 14 & - 13 \end{array} \right]$$ where \(a\) is a real number. The vectors \(\mathbf { v } _ { 1 } , \mathbf { v } _ { 2 }\), and \(\mathbf { v } _ { 3 }\) are eigenvectors of \(\mathbf { M }\) The corresponding eigenvalues are \(\lambda _ { 1 } , \lambda _ { 2 }\), and \(\lambda _ { 3 }\) respectively.
It is given that \(\lambda _ { 2 } = 1\) and \(\mathbf { v } _ { 1 } = \left[ \begin{array} { l } 1 \\ 0 \\ 3 \end{array} \right] , \mathbf { v } _ { 2 } = \left[ \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right]\) and \(\mathbf { v } _ { 3 } = \left[ \begin{array} { l } c \\ 0 \\ 1 \end{array} \right]\),
where \(c\) is an integer. 6
    1. Find the value of \(\lambda _ { 1 }\) 6
  1. (ii) Find the value of \(a\) 6
  2. Find the integer \(c\) and the value of \(\lambda _ { 3 }\) 6
  3. Find matrices \(\mathbf { U } , \mathbf { D }\) and \(\mathbf { U } ^ { - 1 }\), such that \(\mathbf { D }\) is diagonal and \(\mathbf { M } = \mathbf { U D U } ^ { - 1 }\)
AQA Further Paper 2 2019 June Q9
13 marks Standard +0.3
9
  1. Find the eigenvalues and corresponding eigenvectors of the matrix $$\mathbf { M } = \left[ \begin{array} { c c } \frac { 1 } { 5 } & \frac { 2 } { 5 } \\ \frac { - 3 } { 5 } & \frac { 13 } { 10 } \end{array} \right]$$ 9
  2. Find matrices \(\mathbf { U }\) and \(\mathbf { D }\) such that \(\mathbf { D }\) is a diagonal matrix and \(\mathbf { M } = \mathbf { U D U } ^ { - 1 }\) 9
  3. Given that \(\mathbf { M } ^ { n } \rightarrow \mathbf { L }\) as \(n \rightarrow \infty\), find the matrix \(\mathbf { L }\).
    [0pt] [4 marks]
    9
  4. The transformation represented by \(\mathbf { L }\) maps all points onto a line. Find the equation of this line.
    \begin{center} \begin{tabular}{ | l | }