OCR MEI Further Extra Pure 2024 June — Question 4

Exam BoardOCR MEI
ModuleFurther Extra Pure (Further Extra Pure)
Year2024
SessionJune
TopicInvariant lines and eigenvalues and vectors

4 The matrix \(\mathbf { P }\) is given by \(\mathbf { P } = \left( \begin{array} { r r r } 1 & 7 & 8
- 6 & 12 & 12
- 2 & 4 & 8 \end{array} \right)\).
  1. Show that the characteristic equation of \(\mathbf { P }\) is \(- \lambda ^ { 3 } + 21 \lambda ^ { 2 } - 126 \lambda + 216 = 0\). You are given that the roots of this equation are 3,6 and 12 .
    1. Verify that \(\left( \begin{array} { r } 1
      - 2
      2 \end{array} \right)\) is an eigenvector of \(\mathbf { P }\), stating its associated eigenvalue.
    2. The vector \(\left( \begin{array} { l } x
      y
      z \end{array} \right)\) is an eigenvector of \(\mathbf { P }\) with eigenvalue 6. Given that \(z = 5\), find \(x\) and \(y\). You are given that \(\mathbf { P }\) can be expressed in the form \(\mathbf { E D E } ^ { - 1 }\), where \(\mathbf { E } = \left( \begin{array} { r r r } 3 & 2 & 1
      1 & 2 & - 2
      1 & 1 & 2 \end{array} \right)\) and \(\mathbf { D }\) is a diagonal matrix. The characteristic equation of \(\mathbf { E }\) is \(- \lambda ^ { 3 } + 7 \lambda ^ { 2 } - 15 \lambda + 9 = 0\).
    1. Use the Cayley-Hamilton theorem to express \(\mathbf { E } ^ { - 1 }\) in terms of positive powers of \(\mathbf { E }\).
    2. Hence find \(\mathbf { E } ^ { - 1 }\).
    3. By identifying the matrix \(\mathbf { D }\) and using \(\mathbf { P } = \mathbf { E D E } ^ { - 1 }\), determine \(\mathbf { P } ^ { 4 }\).