CAIE Further Paper 2 2020 November — Question 9

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2020
SessionNovember
TopicInvariant lines and eigenvalues and vectors

9 It is given that \(a\) is a positive constant.
  1. Show that the system of equations $$\begin{aligned} a x + ( 2 a + 5 ) y + ( a + 1 ) z & = 1
    - 4 y & = 2
    3 y - z & = 3 \end{aligned}$$ has a unique solution and interpret this situation geometrically.
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { c c c } a & 2 a + 5 & a + 1
    0 & - 4 & 0
    0 & 3 & - 1 \end{array} \right)$$
  2. Show that the eigenvalues of \(\mathbf { A }\) are \(a , - 1\) and - 4 .
  3. Find a matrix \(\mathbf { P }\) such that $$\mathbf { A } = \mathbf { P } \left( \begin{array} { r r r } a & 0 & 0
    0 & - 1 & 0
    0 & 0 & - 4 \end{array} \right) \mathbf { P } ^ { - 1 } .$$
  4. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.