Edexcel FP2 2024 June — Question 4

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2024
SessionJune
TopicInvariant lines and eigenvalues and vectors

4. $$\mathbf { A } = \left( \begin{array} { r r r } 4 & 2 & 0
2 & p & - 2
0 & - 2 & 2 \end{array} \right) \quad \text { where } p \text { is a constant }$$ Given that \(\left( \begin{array} { r } 2
- 1
2 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\),
  1. determine the eigenvalue corresponding to this eigenvector.
  2. Hence show that \(p = 3\)
  3. Determine
    1. the remaining eigenvalues of \(\mathbf { A }\),
    2. corresponding eigenvectors for these eigenvalues.
  4. Hence determine a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } = \mathbf { P D P } ^ { \mathrm { T } }\)