4.
$$\mathbf { A } = \left( \begin{array} { r r r }
4 & 2 & 0
2 & p & - 2
0 & - 2 & 2
\end{array} \right) \quad \text { where } p \text { is a constant }$$
Given that \(\left( \begin{array} { r } 2
- 1
2 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\),
- determine the eigenvalue corresponding to this eigenvector.
- Hence show that \(p = 3\)
- Determine
- the remaining eigenvalues of \(\mathbf { A }\),
- corresponding eigenvectors for these eigenvalues.
- Hence determine a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } = \mathbf { P D P } ^ { \mathrm { T } }\)