| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2016 |
| Session | June |
| Topic | Invariant lines and eigenvalues and vectors |
10 Write down the eigenvalues of the matrix \(\mathbf { A }\), where
$$\mathbf { A } = \left( \begin{array} { r r r }
- 2 & 1 & - 1
0 & - 1 & 2
0 & 0 & 1
\end{array} \right)$$
and find corresponding eigenvectors.
Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\), and hence find the matrix \(\mathbf { A } ^ { n }\), where \(n\) is a positive integer.
[0pt]
[Question 11 is printed on the next page.]