CAIE FP1 2016 June — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2016
SessionJune
TopicInvariant lines and eigenvalues and vectors

10 Write down the eigenvalues of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } - 2 & 1 & - 1
0 & - 1 & 2
0 & 0 & 1 \end{array} \right)$$ and find corresponding eigenvectors. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\), and hence find the matrix \(\mathbf { A } ^ { n }\), where \(n\) is a positive integer.
[0pt] [Question 11 is printed on the next page.]