Edexcel FP2 Specimen — Question 3

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
SessionSpecimen
TopicInvariant lines and eigenvalues and vectors

  1. The matrix \(\mathbf { M }\) is given by
$$\mathbf { M } = \left( \begin{array} { r r r } 2 & 1 & 0
1 & 2 & 0
- 1 & 0 & 4 \end{array} \right)$$
  1. Show that 4 is an eigenvalue of \(\mathbf { M }\), and find the other two eigenvalues.
  2. For each of the eigenvalues find a corresponding eigenvector.
  3. Find a matrix \(\mathbf { P }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { M P }\) is a diagonal matrix.