Group properties and structure

A question is this type if and only if it asks about properties of a given group such as commutativity, order of elements, proper subgroups, or whether the group is cyclic.

69 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
Edexcel D2 2002 June Q4
8 marks Moderate -0.5
4. Andrew ( \(A\) ) and Barbara ( \(B\) ) play a zero-sum game. This game is represented by the following payoff matrix for Andrew. $$A \left( \begin{array} { c c c } & B & \\ 3 & 5 & 4 \\ 1 & 4 & 2 \\ 6 & 3 & 7 \end{array} \right)$$
  1. Explain why this matrix may be reduced to $$\left( \begin{array} { l l } 3 & 5 \\ 6 & 3 \end{array} \right)$$
  2. Hence find the best strategy for each player and the value of the game.
    (8)
Edexcel D2 2003 June Q4
14 marks Moderate -0.5
4. A two person zero-sum game is represented by the following pay-off matrix for player \(A\).
\cline { 2 - 4 } \multicolumn{1}{c|}{}\(B\) plays I\(B\) plays II\(B\) plays III
\(A\) plays I2- 13
\(A\) plays II130
\(A\) plays III01- 3
  1. Identify the play safe strategies for each player.
  2. Verify that there is no stable solution to this game.
  3. Explain why the pay-off matrix above may be reduced to
    \cline { 2 - 4 } \multicolumn{1}{c|}{}\(B\) plays I\(B\) plays II\(B\) plays III
    \(A\) plays I2- 13
    \(A\) plays II130
  4. Find the best strategy for player \(A\), and the value of the game.
Edexcel D2 2004 June Q4
14 marks Standard +0.8
4. Emma and Freddie play a zero-sum game. This game is represented by the following pay-off matrix for Emma. \(\left( \begin{array} { r r r } - 4 & - 1 & 3 \\ 2 & 1 & - 2 \end{array} \right)\)
  1. Show that there is no stable solution.
  2. Find the best strategy for Emma and the value of the game to her.
  3. Write down the value of the game to Freddie and his pay-off matrix.
Edexcel D2 2007 June Q2
13 marks Moderate -0.5
2. Denis (D) and Hilary (H) play a two-person zero-sum game represented by the following pay-off matrix for Denis.
H plays 1H plays 2H plays 3
D plays 12- 13
D plays 2- 34- 4
  1. Show that there is no stable solution to this game.
  2. Find the best strategy for Denis and the value of the game to him.
    (10) (Total 13 marks)
Edexcel D2 2011 June Q4
9 marks Easy -1.8
4. Laura and Sam play a zero-sum game. This game is represented by the following pay-off matrix for Laura.
S plays 1S plays 2S plays 3
L plays 1- 4- 11
L plays 23- 1- 2
L plays 3- 302
Find the best strategy for Laura and the value of the game to her.
Edexcel D2 2013 June Q4
9 marks Standard +0.8
4. Robin (R) and Steve (S) play a two-person zero-sum game which is represented by the following pay-off matrix for Robin.
S plays 1S plays 2S plays 3
R plays 1213
R plays 21- 12
R plays 3- 13- 3
Find the best strategy for Robin and the value of the game to him.
Edexcel D2 2013 June Q4
11 marks Moderate -0.5
4. A two-person zero-sum game is represented by the following pay-off matrix for player A.
B plays 1B plays 2B plays 3
A plays 154- 6
A plays 2- 1- 23
A plays 31- 12
  1. Reduce the game so that player B has only two possible actions.
  2. Write down the reduced pay-off matrix for player B.
  3. Find the best strategy for player B and the value of the game to him.
Edexcel D2 2014 June Q3
10 marks Moderate -0.5
3. A two-person zero-sum game is represented by the following pay-off matrix for player A.
B plays 1B plays 2B plays 3
A plays 1- 22- 3
A plays 211- 1
A plays 32- 11
  1. Starting by reducing player B's options, find the best strategy for player B.
  2. State the value of the game to player B.
Edexcel D2 2015 June Q2
16 marks Easy -1.8
2. Rani and Greg play a zero-sum game. The pay-off matrix shows the number of points that Rani scores for each combination of strategies.
Greg plays 1Greg plays 2Greg plays 3
Rani plays 1- 312
Rani plays 2021
Rani plays 324- 5
  1. Explain what the term 'zero-sum game' means.
  2. State the number of points that Greg scores if he plays his strategy 3 and Rani plays her strategy 3.
  3. Verify that there is no stable solution to this game.
  4. Reduce the game so that Greg has only two possible strategies. Write down the reduced pay-off matrix for Greg.
  5. Find the best strategy for Greg and the value of the game to him.
Edexcel D2 Q3
7 marks Moderate -0.5
3. A two-person zero-sum game is represented by the following pay-off matrix for player A.
B plays 1B plays 2B plays 3
A plays 1- 243
A plays 24- 12
Find the best strategy for player A and the value of the game.
(Total 7 marks)
Edexcel D2 Specimen Q8
11 marks Standard +0.8
8. A two person zero-sum game is represented by the following pay-off matrix for player \(A\).
IIIIII
I523
II354
  1. Verify that there is no stable solution to this game.
  2. Find the best strategy for player \(A\) and the value of the game to her.
    (Total 11 marks)
OCR D2 2006 January Q6
15 marks Moderate -1.0
6 Lucy and Maria repeatedly play a zero-sum game. The pay-off matrix shows the number of points won by Lucy, who is playing rows, for each combination of strategies.
\cline { 2 - 5 }\(X\)\(Y\)\(Z\)
\(A\)2- 34
\cline { 2 - 5 } Lucy's\(B\)- 351
\cline { 2 - 5 } strategyy\(C\)42- 3
  1. Show that strategy \(A\) does not dominate strategy \(B\) and also that strategy \(B\) does not dominate strategy \(A\).
  2. Show that Maria will not choose strategy \(Y\) if she plays safe.
  3. Give a reason why Lucy might choose to play strategy \(B\). Lucy decides to play strategy \(A\) with probability \(p _ { 1 }\), strategy \(B\) with probability \(p _ { 2 }\) and strategy \(C\) with probability \(p _ { 3 }\). She formulates the following LP problem to be solved using the Simplex algorithm: $$\begin{array} { l l } \text { maximise } & M = m - 3 , \\ \text { subject to } & m \leqslant 5 p _ { 1 } + 7 p _ { 3 } , \\ & m \leqslant 8 p _ { 2 } + 5 p _ { 3 } , \\ & m \leqslant 7 p _ { 1 } + 4 p _ { 2 } , \\ & p _ { 1 } + p _ { 2 } + p _ { 3 } \leqslant 1 , \\ \text { and } & p _ { 1 } \geqslant 0 , p _ { 2 } \geqslant 0 , p _ { 3 } \geqslant 0 , m \geqslant 0 . \end{array}$$ [You are not required to solve this problem.]
  4. Explain why 3 has to be subtracted from \(m\) in the objective row.
  5. Explain how \(5 p _ { 1 } + 7 p _ { 3 } , 8 p _ { 2 } + 5 p _ { 3 }\) and \(7 p _ { 1 } + 4 p _ { 2 }\) were obtained.
  6. Explain why \(m\) has to be less than or equal to each of the expressions in part (v). Lucy discovers that Maria does not intend ever to choose strategy \(Y\). Because of this she decides that she will never choose strategy \(B\). This means that \(p _ { 2 } = 0\).
  7. Show that the expected number of points won by Lucy when Maria chooses strategy \(X\) is \(4 - 2 p _ { 1 }\) and find a similar expression for the number of points won by Lucy when Maria chooses strategy \(Z\).
  8. Set your two expressions from part (vii) equal to each other and solve for \(p _ { 1 }\). Calculate the expected number of points won by Lucy with this value of \(p _ { 1 }\) and also when \(p _ { 1 } = 0\) and when \(p _ { 1 } = 1\). Use these values to decide how Lucy should choose between strategies \(A\) and \(C\) to maximise the expected number of points that she wins.
OCR D2 2007 January Q3
8 marks Easy -2.0
3 Rebecca and Claire repeatedly play a zero-sum game in which they each have a choice of three strategies, \(X , Y\) and \(Z\). The table shows the number of points Rebecca scores for each pair of strategies. \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Claire}
\(X\)\(Y\)\(Z\)
\cline { 2 - 5 }\(X\)5- 31
\cline { 2 - 5 } Rebecca\(Y\)32- 2
\cline { 2 - 5 }\(Z\)- 113
\cline { 2 - 5 }
\cline { 2 - 5 }
\end{table}
  1. If both players choose strategy \(X\), how many points will Claire score?
  2. Show that row \(X\) does not dominate row \(Y\) and that column \(Y\) does not dominate column \(Z\).
  3. Find the play-safe strategies. State which strategy is best for Claire if she knows that Rebecca will play safe.
  4. Explain why decreasing the value ' 5 ' when both players choose strategy \(X\) cannot alter the playsafe strategies.
OCR D2 2009 January Q5
20 marks Moderate -0.5
5 The local rugby club has challenged the local cricket club to a chess match to raise money for charity. Each of the top three chess players from the rugby club has played 10 chess games against each of the top three chess players from the cricket club. There were no drawn games. The table shows, for each pairing, the number of games won by the player from the rugby club minus the number of games won by the player from the cricket club. This will be called the score; the scores make a zero-sum game.
Cricket club
\cline { 2 - 5 }\cline { 2 - 5 }DougEuanFiona
\cline { 2 - 5 } Sanjeev04- 2
\cline { 2 - 5 } Rugby clubTom- 42- 4
\cline { 2 - 5 }Ursula2- 60
\cline { 2 - 5 }
\cline { 2 - 5 }
  1. How many of the 10 games between Sanjeev and Doug did Sanjeev win? How many of the 10 games between Sanjeev and Euan did Euan win? Each club must choose one person to play. They want to choose the person who will optimise the score.
  2. Find the play-safe choice for each club, showing your working. Explain how you know that the game is not stable.
  3. Which person should the cricket club choose if they know that the rugby club will play-safe and which person should the rugby club choose if they know that the cricket club will play-safe?
  4. Explain why the rugby club should not choose Tom. Which player should the cricket club not choose, and why? The rugby club chooses its player by using random numbers to choose between Sanjeev and Ursula, where the probability of choosing Sanjeev is \(p\) and the probability of choosing Ursula is \(1 - p\).
  5. Write down an expression for the expected score for the rugby club for each of the two remaining choices that can be made by the cricket club. Calculate the optimal value for \(p\). Doug is studying AS Mathematics. He removes the row representing Tom and then models the cricket club's problem as the following LP. $$\begin{array} { l l } \operatorname { maximise } & M = m - 4 \\ \text { subject to } & m \leqslant 4 x \quad + 6 z \\ & m \leqslant 2 x + 10 y + 4 z \\ & x + y + z \leqslant 1 \\ \text { and } & m \geqslant 0 , x \geqslant 0 , y \geqslant 0 , z \geqslant 0 \end{array}$$
  6. Show how Doug used the values in the table to get the constraints \(m \leqslant 4 x + 6 z\) and \(m \leqslant 2 x + 10 y + 4 z\). Doug uses the Simplex algorithm to solve the LP problem. His solution has \(x = 0\) and \(y = \frac { 1 } { 6 }\).
  7. Calculate the optimal value of \(M\).
OCR D2 2010 January Q5
16 marks Easy -1.8
5 Robbie received a new computer game for Christmas. He has already worked through several levels of the game but is now stuck at one of the levels in which he is playing against a character called Conan. Robbie has played this particular level several times. Each time Robbie encounters Conan he can choose to be helped by a dwarf, an elf or a fairy. Conan chooses between being helped by a goblin, a hag or an imp. The players make their choices simultaneously, without knowing what the other has chosen. Robbie starts the level with ten gold coins. The table shows the number of gold coins that Conan must give Robbie in each encounter for each combination of helpers (a negative entry means that Robbie gives gold coins to Conan). If Robbie's total reaches twenty gold coins then he completes the level, but if it reaches zero the game ends. This means that each attempt can be regarded as a zero-sum game.
Conan
\cline { 2 - 5 }GoblinHagImp
\cline { 2 - 5 }Dwarf- 1- 42
\cline { 2 - 5 } RobbieElf31- 4
\cline { 2 - 5 }Fairy1- 11
\cline { 2 - 5 }
\cline { 2 - 5 }
  1. Find the play-safe choice for each player, showing your working. Which helper should Robbie choose if he thinks that Conan will play-safe?
  2. How many gold coins can Robbie expect to win, with each choice of helper, if he thinks that Conan will choose randomly between his three choices (so that each has probability \(\frac { 1 } { 3 }\) )? Robbie decides to choose his helper by using random numbers to choose between the elf and the fairy, where the probability of choosing the elf is \(p\) and the probability of choosing the fairy is \(1 - p\).
  3. Write down an expression for the expected number of gold coins won at each encounter by Robbie for each of Conan's choices. Calculate the optimal value of \(p\). Robbie's girlfriend thinks that he should have included the possibility of choosing the dwarf. She denotes the probability with which Robbie should choose the dwarf, the elf and the fairy as \(x , y\) and \(z\) respectively. She then models the problem of choosing between the three helpers as the following LP. $$\begin{aligned} \text { Maximise } & M = m - 4 , \\ \text { subject to } & m \leqslant 3 x + 7 y + 5 z \\ & m \leqslant 5 y + 3 z \\ & m \leqslant 6 x + 5 z \\ & x + y + z \leqslant 1 , \\ \text { and } & m \geqslant 0 , x \geqslant 0 , y \geqslant 0 , z \geqslant 0 . \end{aligned}$$
  4. Explain how the expression \(3 x + 7 y + 5 z\) was formed. Robbie's girlfriend uses the Simplex algorithm to solve the LP problem. Her solution has \(x = 0\) and \(y = \frac { 2 } { 7 }\).
  5. Calculate the optimal value of \(M\).
OCR D2 2013 January Q5
12 marks Moderate -1.0
5 Rose and Colin are playing a game in which they each have four cards. Each player chooses a card from those in their hand, and simultaneously they show each other the cards they have chosen. The table below shows how many points Rose wins for each combination of cards. In each case the number of points that Colin wins is the negative of the entry in the table. Both Rose and Colin are trying to win as many points as possible.
Colin's card
\(\circ\)\(\square\)\(\diamond\)\(\triangle\)
\cline { 2 - 6 }\(\bullet\)- 23- 41
\cline { 2 - 6 } Rose's\(\square\)4- 345
\cline { 2 - 6 } card\(\diamond\)2- 5- 2- 1
\cline { 2 - 6 }\(\triangle\)- 65- 5- 3
\cline { 2 - 6 }
  1. What is the greatest number of points that Colin can win when Rose chooses and which card does Colin need to choose to achieve this?
  2. Explain why Rose should never choose and find the card that Colin should never choose. Hence reduce the game to a \(3 \times 3\) pay-off matrix.
  3. Find the play-safe strategy for each player on the reduced game and show whether or not the game is stable. Rose makes a random choice between her cards, choosing with probability \(x\) with probability \(y\), and with probability \(z\). She formulates the following LP problem to be solved using the Simplex algorithm:
    maximise \(\quad M = m - 6\),
    subject to \(\quad m \leqslant 4 x + 10 y\),
    \(n \leqslant 9 x + 3 y + 11 z\),
    \(n \leqslant 2 x + 10 y + z\),
    \(x + y + z \leqslant 1\),
    and
    \(x \geqslant 0 , y \geqslant 0 , z \geqslant 0 , m \geqslant 0\).
    (You are not required to solve this problem.)
  4. Explain how \(9 x + 3 y + 11 z\) was obtained. The Simplex algorithm is used to solve the LP problem. The solution has \(x = \frac { 7 } { 48 } , y = \frac { 27 } { 48 } , z = \frac { 14 } { 48 }\).
  5. Calculate the optimal value of \(M\).
OCR D2 2012 June Q4
15 marks Challenging +1.8
4 A group of rowers have challenged some cyclists to see which team is fitter. There will be several rounds to the challenge. In each round, the rowers and the cyclists each choose a team member and these two compete in a series of gym exercises. The time by which the winner finishes ahead of the loser is converted into points. These points are added to the score for the winner's team and taken off the score for the loser's team. The table shows the expected number of points added to the score for the rowers for each combination of competitors. Rowers \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Cyclists}
ChrisJamieWendy
Andy- 32- 4
Kath54- 6
Zac1- 4- 5
\end{table}
  1. Regarding this as a zero-sum game, find the play-safe strategy for the rowers and the play-safe strategy for the cyclists. Show that the game is stable. Unfortunately, Wendy and Kath are needed by their coaches and cannot compete.
  2. Show that the resulting reduced game is unstable.
  3. Suppose that the cyclists are equally likely to choose Chris or Jamie. Calculate the expected number of points added to the score for the rowers when they choose Andy and when they choose Zac. Suppose that the cyclists use random numbers to choose between Chris and Jamie, so that Chris is chosen with probability \(p\) and Jamie with probability \(1 - p\).
  4. Showing all your working, calculate the optimum value of \(p\) for the cyclists.
  5. The rowers use random numbers in a similar way to choose between Andy and Zac, so that Andy is chosen with probability \(q\) and Zac with probability \(1 - q\). Calculate the optimum value of \(q\).
OCR D2 2014 June Q4
16 marks Standard +0.3
4 Ross and Collwen are playing a game in which each secretly chooses a magic spell. They then reveal their choices, and work out their scores using the tables below. Ross and Collwen are both trying to get as large a score as possible.
Collwen's choice
Score for
Ross
FireIceGale
\cline { 2 - 5 }Fire172
\cline { 2 - 5 }
Ross's
choice
Ice624
\cline { 2 - 5 }Gale513
\cline { 2 - 5 }
Collwen's choice
Score for
Collwen
FireIceGale
\cline { 2 - 5 }Fire716
\cline { 2 - 5 }
Ross's
choice
Ice264
\cline { 2 - 5 }Gale375
\cline { 2 - 5 }
  1. Explain how this can be rewritten as the following zero-sum game.
    Collwen's choice
    FireIceGale
    \cline { 2 - 5 }Fire- 33- 2
    \cline { 2 - 5 }
    Ross's
    choice
    Ice2- 20
    \cline { 2 - 5 }Gale1- 3- 1
    \cline { 2 - 5 }
  2. If Ross chooses Ice what is Collwen's best choice?
  3. Find the play-safe strategy for Ross and the play-safe strategy for Collwen, showing your working. Explain how you know that the game is unstable.
  4. Show that none of Collwen's strategies dominates any other.
  5. Explain why Ross would never choose Gale, hence reduce the game to a \(2 \times 3\) zero-sum game, showing the pay-offs for Ross. Suppose that Ross uses random numbers to choose between Fire and Ice, choosing Fire with probability \(p\) and Ice with probability \(1 - p\).
  6. Use a graphical method to find the optimal value of \(p\) for Ross.
OCR D2 2015 June Q6
20 marks Easy -1.8
6 At the final battle in a war game, the two opposing armies, led by General Rose, \(R\), and Colonel Cole, \(C\), are facing each other across a wide river. Each army consists of four divisions. The commander of each army needs to send some of his troops North and send the rest South. Each commander has to decide how many divisions (1,2 or 3) to send North. Intelligence information is available on the number of thousands of soldiers that each army can expect to have remaining with each combination of strategies. Thousands of soldiers remaining in \(R\) 's army \(C\) 's choice
\(R\) 's choice
123
1152530
2205015
3303515
Thousands of soldiers remaining in \(C\) 's army
\(C\) 's choice
\(R\) 's choice
123
1203510
2155020
3102540
  1. Construct a table to show the number of thousands of soldiers remaining in \(R\) 's army minus the number of thousands of soldiers remaining in \(C\) 's army (the excess for \(R\) 's army) for each combination of strategies. The commander whose army has the greatest positive excess of soldiers remaining at the end of the game will be declared the winner.
  2. Explain the meaning of the value in the top left cell of your table from part (i) (where each commander chooses strategy 1). Hence explain why this table may be regarded as representing a zero-sum game.
  3. Find the play-safe strategy for \(R\) and the play-safe strategy for \(C\). If \(C\) knows that \(R\) will choose his play-safe strategy, which strategy should \(C\) choose? One of the strategies is redundant for one of the commanders, because of dominance.
  4. Draw a table for the reduced game, once the redundant strategy has been removed. Label the rows and columns to show how many divisions have been sent North. A mixed strategy is to be employed on the resulting reduced game. This leads to the following LP problem:
    Maximise \(\quad M = m - 25\)
    Subject to \(\quad m \leqslant 15 x + 25 y + 35 z\)
    \(m \leqslant 45 x + 20 y\)
    \(x + y + z \leqslant 1\)
    and
  5. Interpret what \(x , y\) and \(z\) represent and show how \(m \leqslant 15 x + 25 y + 35 z\) was formed. A computer runs the Simplex algorithm to solve this problem. It gives \(x = 0.5385 , y = 0\) and \(z = 0.4615\).
  6. Describe how this solution should be interpreted, in terms of how General Rose chooses where to send his troops. Calculate the optimal value for \(M\) and explain its meaning. Elizabeth does not have access to a computer. She says that at the solution to the LP problem \(15 x + 25 y + 35 z\) must equal \(45 x + 20 y\) and \(x + y + z\) must equal 1 . This simplifies to give \(y + 7 z = 6 x\) and \(x + y + z = 1\).
  7. Explain why there can be no valid solution of \(y + 7 z = 6 x\) and \(x + y + z = 1\) with \(x = 0\). Elizabeth tries \(z = 0\) and gets the solution \(x = \frac { 1 } { 7 }\) and \(y = \frac { 6 } { 7 }\).
  8. Explain why this is not a solution to the LP problem.
OCR D2 2016 June Q4
10 marks Easy -1.2
4 Rowan and Colin are playing a game of 'scissors-paper-rock'. In each round of this game, each player chooses one of scissors ( \(\$$ ), paper ( \)\square\( ) or rock ( \)\bullet$ ). The players reveal their choices simultaneously, using coded hand signals. Rowan and Colin will play a large number of rounds. At the end of the game the player with the greater total score is the winner. The rules of the game are that scissors wins over paper, paper wins over rock and rock wins over scissors. In this version of the game, if a player chooses scissors they will score \(+ 1,0\) or - 1 points, according to whether they win, draw or lose, but if they choose paper or rock they will score \(+ 2,0\) or - 2 points. This gives the following pay-off tables.
\includegraphics[max width=\textwidth, alt={}, center]{490ff276-6639-40a1-bffb-dc6967f3ab21-5_476_773_667_239}
\includegraphics[max width=\textwidth, alt={}, center]{490ff276-6639-40a1-bffb-dc6967f3ab21-5_478_780_667_1071}
  1. Use an example to show that this is not a zero-sum game.
  2. Write down the minimum number of points that Rowan can win using each strategy. Hence find the strategy that maximises the minimum number of points that Rowan can win. Rowan decides to use random numbers to choose between the three strategies, choosing scissors with probability \(p\), paper with probability \(q\) and rock with probability \(( 1 - p - q )\).
  3. Find and simplify, in terms of \(p\) and \(q\), expressions for the expected number of points won by Rowan for each of Colin's possible choices. Rowan wants his expected winnings to be the same for all three of Colin's possible choices.
  4. Calculate the probability with which Rowan should play each strategy.
OCR MEI D2 2005 June Q1
16 marks Moderate -0.5
1 The switching circuit in Fig. 1.1 shows switches, \(s\) for a car's sidelights, \(h\) for its dipped headlights and f for its high-intensity rear foglights. It also shows the three sets of lights. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ab28be76-9329-41c8-90fe-ff1bdb28f788-2_284_917_404_580} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
\end{figure} (Note: \(s\) and \(h\) are each "ganged" switches. A ganged switch consists of two connected switches sharing a single switch control, so that both are either on or off together.)
    1. Describe in words the conditions under which the foglights will come on. Fig. 1.2 shows a combinatorial circuit. \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{ab28be76-9329-41c8-90fe-ff1bdb28f788-2_367_1235_1183_431} \captionsetup{labelformat=empty} \caption{Fig. 1.2}
      \end{figure}
    2. Write the output in terms of a Boolean expression involving \(s , h\) and \(f\).
    3. Use a truth table to prove that \(\mathrm { s } \wedge \mathrm { h } \wedge \mathrm { f } = \sim ( \sim \mathrm { s } \vee \sim \mathrm { h } ) \wedge \mathrm { f }\).
  1. A car's first gear can be engaged ( g ) if either both the road speed is low ( r ) and the clutch is depressed ( d ), or if both the road speed is low ( r ) and the engine speed is the correct multiple of the road speed (m).
    1. Draw a switching circuit to represent the conditions under which first gear can be engaged. Use two ganged switches to represent \(r\), and single switches to represent each of \(\mathrm { d } , \mathrm { m }\) and g .
    2. Draw a combinatorial circuit to represent the Boolean expression \(\mathrm { r } \wedge ( \mathrm { d } \vee \mathrm { m } ) \wedge \mathrm { g }\).
    3. Use Boolean algebra to prove that \(\mathrm { r } \wedge ( \mathrm { d } \vee \mathrm { m } ) \wedge \mathrm { g } = ( ( \mathrm { r } \wedge \mathrm { d } ) \vee ( \mathrm { r } \wedge \mathrm { m } ) ) \wedge \mathrm { g }\).
    4. Draw another switching circuit to represent the conditions under which first gear can be selected, but without using a ganged switch.
OCR MEI D2 2006 June Q1
16 marks Moderate -0.5
1
  1. Use a truth table to prove \(\sim ( \sim \mathrm { T } \Rightarrow \sim \mathrm { S } ) \Leftrightarrow ( \sim \mathrm { T } \wedge \mathrm { S } )\).
  2. Prove that \(( \mathrm { A } \Rightarrow \mathrm { B } ) \Leftrightarrow ( \sim \mathrm { A } \vee \mathrm { B } )\) and hence use Boolean algebra to prove that $$\sim ( \sim \mathrm { T } \Rightarrow \sim \mathrm {~S} ) \Leftrightarrow ( \sim \mathrm { T } \wedge \mathrm {~S} ) .$$
  3. A teacher wrote on a report "It is not the case that if Joanna doesn't try then she won't succeed." He meant to say that if Joanna were to try then she would have a chance of success. By letting T be "Joanna will try" and S be "Joanna will succeed", find the real meaning of what the teacher wrote.
OCR MEI D2 2008 June Q1
16 marks Easy -1.8
1
  1. The Plain English Society presents an annual "Foot in Mouth" award for "a truly baffling comment". In 2004 it was presented to Boris Johnson MP for a comment on the \(12 ^ { \text {th } }\) December 2003 edition of "Have I Got News For You":
    "I could not fail to disagree with you less."
    1. Explain why this can be rewritten as:
      "I could succeed in agreeing with you more."
    2. Rewrite the comment more simply in your own words without changing its meaning.
  2. Two switches are to be wired between a mains electricity supply and a light so that when the state of either switch is changed the state of the light changes (i.e. from off to on, or from on to off). Draw a switching circuit to achieve this. The switches are both 2-way switches, thus:
    \includegraphics[max width=\textwidth, alt={}, center]{88acde67-e22b-478a-9145-48abe931beff-2_127_220_895_1054}
  3. Construct a truth table to show the following. $$[ ( a \wedge b ) \vee ( ( \sim a ) \wedge ( \sim b ) ) ] \Leftrightarrow [ ( ( \sim a ) \vee b ) \wedge ( a \vee ( \sim b ) ) ]$$
OCR MEI D2 2009 June Q1
16 marks Easy -2.5
1
  1. The following was said in a charity appeal on Radio 4 in October 2006.
    "It is hard to underestimate the effect that your contribution will make."
    Rewrite the comment more simply in your own words without changing its meaning.
  2. A machine has three components, A, B and C, each of which is either active or inactive.
    • The machine is active if A and B are both active.
    • The machine is active if A is inactive and C is active.
    • The machine is active if B is inactive and C is active.
    • Otherwise the machine is inactive.
    The states (active or inactive) of the components and the machine are to be modelled by a combinatorial circuit in which "active" is represented by "true" and "inactive" is represented by "false". Draw such a circuit.
  3. Construct a truth table to show the following. $$[ ( ( \mathrm { a } \wedge \mathrm {~b} ) \vee ( ( \sim \mathrm { a } ) \wedge \mathrm { c } ) ) \vee ( ( \sim \mathrm { b } ) \wedge \mathrm { c } ) ] \Leftrightarrow \sim [ ( ( \sim \mathrm { a } ) \wedge ( \sim \mathrm { c } ) ) \vee ( ( \sim \mathrm { b } ) \wedge ( \sim \mathrm { c } ) ) ]$$
OCR MEI D2 2011 June Q1
16 marks Moderate -1.0
1
  1. Heard in Parliament: "Will the minister not now discontinue her proposal to ban the protest?"
    The minister replied "Yes I will."
    To what had the minister committed herself logically, and why might that not have been her intention?
  2. In a cricket tournament an umpire might be required to decide whether or not a batsman is out 'lbw', ie 'leg before wicket'. The lbw law for the tournament refers to parts of the cricket pitch as shown in the diagram (assuming a right-handed batsman):
    \includegraphics[max width=\textwidth, alt={}, center]{52b8153f-e655-4852-a0f8-6f1c1e9c9170-2_254_1045_717_507} The umpire has to make a number of judgements:
    A Would the ball have hit the wicket?
    B Did the ball hit the batsman, or part of his equipment other than the bat, without hitting the bat?
    C Did the ball hit the batsman, or part of his equipment other than the bat, before hitting the bat?
    D Was the part of the batsman or his equipment which was hit by the ball, between the wickets when it was hit? E Was the part of the batsman or his equipment which was hit by the ball, outside of the wicket on the off side when it was hit? F Was the batsman attempting to play a stroke?
    The law can be interpreted as saying that the batsman is out lbw if \([ ( \mathrm { A } \wedge \mathrm { B } ) \vee ( \mathrm { A } \wedge \mathrm { C } ) ] \wedge [ \mathrm { D } \vee ( \mathrm { E } \wedge \sim \mathrm { F } ) ]\).
    The tournament's umpiring manual, in attempting to simplify the law, states that the batsman is out lbw if \(\mathrm { A } \wedge ( \mathrm { B } \vee \mathrm { C } ) \wedge ( \mathrm { D } \vee \mathrm { E } ) \wedge ( \mathrm { D } \vee \sim \mathrm { F } )\). For an lbw decision this requires 4 conditions each to be true.
    1. Use the rules of Boolean algebra to show that the manual's rule is logically equivalent to the law as stated above, naming the rules used at each step. A trainee umpire, using the manual, considers each condition in turn and judges that the following are true: A; B; E; D.
    2. What is her decision and why?
    3. What is odd about her judgement, and does this make the logic invalid?