Find derivative of polynomial

Differentiate polynomial expressions with integer and fractional powers, including simplification.

87 questions

OCR C1 2008 June Q5
5 Find the gradient of the curve \(y = 8 \sqrt { x } + x\) at the point whose \(x\)-coordinate is 9 .
OCR C1 Specimen Q4
4 Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in each of the following cases:
  1. \(y = 4 x ^ { 3 } - 1\),
  2. \(y = x ^ { 2 } \left( x ^ { 2 } + 2 \right)\),
  3. \(y = \sqrt { } x\)
OCR C1 Q2
  1. Differentiate with respect to \(x\)
$$3 x ^ { 2 } - \sqrt { x } + \frac { 1 } { 2 x }$$
OCR MEI C2 2005 January Q1
1 Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(y = x ^ { 6 } + \sqrt { x }\).
OCR MEI C2 2007 January Q1
1 Differentiate \(6 x ^ { \frac { 5 } { 2 } } + 4\).
OCR MEI C2 2008 January Q1
1 Differentiate \(10 x ^ { 4 } + 12\).
OCR MEI C2 Q1
1 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 - 5 x\).
Find the equation of the curve given that it passes through the point \(( 0,1 )\).
OCR MEI C2 Q6
6 Differentiate \(10 x ^ { 4 } + 12\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{936dd0c9-0776-47c5-9eb8-613752bbf286-2_507_494_217_839} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure} Fig. 10 shows a solid cuboid with square base of side \(x \mathrm {~cm}\) and height \(h \mathrm {~cm}\). Its volume is \(120 \mathrm {~cm} ^ { 3 }\).
  1. Find \(h\) in terms of \(x\). Hence show that the surface area, \(A \mathrm {~cm} ^ { 2 }\), of the cuboid is given by \(A = 2 x ^ { 2 } + \frac { 480 } { x }\).
  2. Find \(\frac { \mathrm { d } A } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } A } { \mathrm {~d} x ^ { 2 } }\).
  3. Hence find the value of \(x\) which gives the minimum surface area. Find also the value of the surface area in this case.
OCR MEI C2 Q8
8 Differentiate \(6 x ^ { \frac { 5 } { 2 } } + 4\).
OCR MEI C2 Q2
2 Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(y = x ^ { 6 } + \sqrt { x }\).
  1. Find the equation of the tangent to the curve \(y = x ^ { 4 }\) at the point where \(x = 2\). Give your answer in the form \(y = m x + c\).
  2. Calculate the gradient of the chord joining the points on the curve \(y = x ^ { 4 }\) where \(x = 2\) and \(x = 2.1\).
  3. (A) Expand \(( 2 + h ) ^ { 4 }\).
    (B) Simplify \(\frac { ( 2 + h ) ^ { 4 } - 2 ^ { 4 } } { h }\).
    (C) Show how your result in part (iii) (B) can be used to find the gradient of \(y = x ^ { 4 }\) at the point where \(x = 2\).
  4. Calculate the gradient of the chord joining the points on the curve \(y = x ^ { 2 } - 7\) for which \(x = 3\) and \(x = 3.1\).
  5. Given that \(\mathrm { f } ( x ) = x ^ { 2 } - 7\), find and simplify \(\frac { \mathrm { f } ( 3 + h ) - \mathrm { f } ( 3 ) } { h }\).
  6. Use your result in part (ii) to find the gradient of \(y = x ^ { 2 } - 7\) at the point where \(x = 3\), showing your reasoning.
  7. Find the equation of the tangent to the curve \(y = x ^ { 2 } - 7\) at the point where \(x = 3\).
  8. This tangent crosses the \(x\)-axis at the point P . The curve crosses the positive \(x\)-axis at the point Q . Find the distance PQ , giving your answer correct to 3 decimal places.
  9. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8ff8b67d-1489-4cb1-bcd2-b32db674e29f-3_651_770_242_737} \captionsetup{labelformat=empty} \caption{Fig. 12}
    \end{figure} Fig. 12 shows part of the curve \(y = x ^ { 4 }\) and the line \(y = 8 x\), which intersect at the origin and the point P .
    (A) Find the coordinates of P , and show that the area of triangle OPQ is 16 square units.
    (B) Find the area of the region bounded by the line and the curve.
  10. You are given that \(\mathrm { f } ( x ) = x ^ { 4 }\).
    (A) Complete this identity for \(\mathrm { f } ( x + h )\). $$\mathrm { f } ( x + h ) = ( x + h ) ^ { 4 } = x ^ { 4 } + 4 x ^ { 3 } h + \ldots$$ (B) Simplify \(\frac { \mathrm { f } ( x + h ) - \mathrm { f } ( x ) } { h }\).
    (C) Find \(\lim _ { h \rightarrow 0 } \frac { \mathrm { f } ( x + h ) - \mathrm { f } ( x ) } { h }\).
    (D) State what this limit represents.
OCR MEI C3 2006 June Q4
4 Fig. 4 is a diagram of a garden pond. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{72de4365-c3f0-4106-8daf-3047afeab723-3_296_746_351_657} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} The volume \(V \mathrm {~m} ^ { 3 }\) of water in the pond when the depth is \(h\) metres is given by $$V = \frac { 1 } { 3 } \pi h ^ { 2 } ( 3 - h )$$
  1. Find \(\frac { \mathrm { d } V } { \mathrm {~d} h }\). Water is poured into the pond at the rate of \(0.02 \mathrm {~m} ^ { 3 }\) per minute.
  2. Find the value of \(\frac { \mathrm { d } h } { \mathrm {~d} t }\) when \(h = 0.4\).
OCR MEI C3 Q8
8 Fig. 4 is a diagram of a garden pond. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-5_295_742_410_693} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} The volume \(V \mathrm {~m} ^ { 3 }\) of water in the pond when the depth is \(h\) metres is given by $$V = \frac { 1 } { 3 } \pi h ^ { 2 } ( 3 - h ) .$$
  1. Find \(\frac { \mathrm { d } V } { \mathrm {~d} h }\). Water is poured into the pond at the rate of \(0.02 \mathrm {~m} ^ { 3 }\) per minute.
  2. Find the value of \(\frac { \mathrm { d } h } { \mathrm {~d} t }\) when \(h = 0.4\).
OCR C1 2009 January Q5
5 Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in each of the following cases:
  1. \(y = 10 x ^ { - 5 }\),
  2. \(y = \sqrt [ 4 ] { x }\),
  3. \(y = x ( x + 3 ) ( 1 - 5 x )\).
OCR C1 2010 January Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{918d83c3-1608-4482-9d3d-8af05e65f353-2_394_846_1868_648} The diagram shows part of the curve \(y = x ^ { 2 } + 5\). The point \(A\) has coordinates ( 1,6 ). The point \(B\) has coordinates ( \(a , a ^ { 2 } + 5\) ), where \(a\) is a constant greater than 1 . The point \(C\) is on the curve between \(A\) and \(B\).
  1. Find by differentiation the value of the gradient of the curve at the point \(A\).
  2. The line segment joining the points \(A\) and \(B\) has gradient 2.3. Find the value of \(a\).
  3. State a possible value for the gradient of the line segment joining the points \(A\) and \(C\).
OCR C1 2013 January Q7
7 Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in each of the following cases:
  1. \(y = \frac { ( 3 x ) ^ { 2 } \times x ^ { 4 } } { x }\),
  2. \(y = \sqrt [ 3 ] { x }\),
  3. \(y = \frac { 1 } { 2 x ^ { 3 } }\).
OCR C1 2010 June Q6
6 Find the gradient of the curve \(y = 2 x + \frac { 6 } { \sqrt { x } }\) at the point where \(x = 4\).
OCR C2 2013 January Q3
3 A curve has an equation which satisfies \(\frac { \mathrm { d } y } { \mathrm {~d} x } = k x ( 2 x - 1 )\) for all values of \(x\). The point \(P ( 2,7 )\) lies on the curve and the gradient of the curve at \(P\) is 9 .
  1. Find the value of the constant \(k\).
  2. Find the equation of the curve.
Edexcel AS Paper 1 Specimen Q2
2. The curve \(C\) has equation $$y = 2 x ^ { 2 } - 12 x + 16$$ Find the gradient of the curve at the point \(P ( 5,6 )\).
(Solutions based entirely on graphical or numerical methods are not acceptable.)
OCR PURE Q4
4
  1. It is given that \(y = x ^ { 2 } + 3 x\).
    (a) Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    (b) Find the values of \(x\) for which \(y\) is increasing.
  2. Find \(\int ( 3 - 4 \sqrt { x } ) \mathrm { d } x\).
    \(5 N\) is an integer that is not divisible by 3 . Prove that \(N ^ { 2 }\) is of the form \(3 p + 1\), where \(p\) is an integer.
AQA C1 Q7
7 The volume, \(V \mathrm {~m} ^ { 3 }\), of water in a tank at time \(t\) seconds is given by $$V = \frac { 1 } { 3 } t ^ { 6 } - 2 t ^ { 4 } + 3 t ^ { 2 } , \quad \text { for } t \geqslant 0$$
  1. Find:
    1. \(\frac { \mathrm { d } V } { \mathrm {~d} t }\);
      (3 marks)
    2. \(\frac { \mathrm { d } ^ { 2 } V } { \mathrm {~d} t ^ { 2 } }\).
      (2 marks)
  2. Find the rate of change of the volume of water in the tank, in \(\mathrm { m } ^ { 3 } \mathrm {~s} ^ { - 1 }\), when \(t = 2\).
    1. Verify that \(V\) has a stationary value when \(t = 1\).
    2. Determine whether this is a maximum or minimum value.
AQA C1 2006 January Q7
7 The volume, \(V \mathrm {~m} ^ { 3 }\), of water in a tank at time \(t\) seconds is given by $$V = \frac { 1 } { 3 } t ^ { 6 } - 2 t ^ { 4 } + 3 t ^ { 2 } , \quad \text { for } t \geqslant 0$$
  1. Find:
    1. \(\frac { \mathrm { d } V } { \mathrm {~d} t }\);
      (3 marks)
    2. \(\frac { \mathrm { d } ^ { 2 } V } { \mathrm {~d} t ^ { 2 } }\).
      (2 marks)
  2. Find the rate of change of the volume of water in the tank, in \(\mathrm { m } ^ { 3 } \mathrm {~s} ^ { - 1 }\), when \(t = 2\).
    (2 marks)
    1. Verify that \(V\) has a stationary value when \(t = 1\).
      (2 marks)
    2. Determine whether this is a maximum or minimum value.
      (2 marks)
AQA C1 2014 June Q3
4 marks
3 A curve has equation \(y = 2 x ^ { 5 } + 5 x ^ { 4 } - 1\).
  1. Find:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
  2. The point on the curve where \(x = - 1\) is \(P\).
    1. Determine whether \(y\) is increasing or decreasing at \(P\), giving a reason for your answer.
    2. Find an equation of the tangent to the curve at \(P\).
  3. The point \(Q ( - 2,15 )\) also lies on the curve. Verify that \(Q\) is a maximum point of the curve.
    [0pt] [4 marks]
Edexcel C1 Q8
8. A curve \(C\) has equation \(y = x ^ { 3 } - 5 x ^ { 2 } + 5 x + 2\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\). The points \(P\) and \(Q\) lie on \(C\). The gradient of \(C\) at both \(P\) and \(Q\) is 2 . The \(x\)-coordinate of \(P\) is 3 .
  2. Find the \(x\)-coordinate of \(Q\).
  3. Find an equation for the tangent to \(C\) at \(P\), giving your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants. This tangent intersects the coordinate axes at the points \(R\) and \(S\).
  4. Find the length of \(R S\), giving your answer as a surd.
Edexcel C1 Q9
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e1a283dd-c30a-45ee-af0c-429791036753-4_549_721_251_390} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = \mathrm { f } ( x )\) which crosses the \(x\)-axis at the origin and at the points \(A\) and \(B\). Given that $$f ^ { \prime } ( x ) = 6 - 4 x - 3 x ^ { 2 } ,$$
  1. find an expression for \(y\) in terms of \(x\),
  2. show that \(A B = k \sqrt { 7 }\), where \(k\) is an integer to be found.
Edexcel C1 Q3
  1. The curve with equation \(y = \mathrm { f } ( x )\) passes through the point (8, 7).
Given that $$\mathrm { f } ^ { \prime } ( x ) = 4 x ^ { \frac { 1 } { 3 } } - 5$$ find \(\mathrm { f } ( x )\).