7 The volume, \(V \mathrm {~m} ^ { 3 }\), of water in a tank at time \(t\) seconds is given by
$$V = \frac { 1 } { 3 } t ^ { 6 } - 2 t ^ { 4 } + 3 t ^ { 2 } , \quad \text { for } t \geqslant 0$$
- Find:
- \(\frac { \mathrm { d } V } { \mathrm {~d} t }\);
(3 marks) - \(\frac { \mathrm { d } ^ { 2 } V } { \mathrm {~d} t ^ { 2 } }\).
(2 marks)
- Find the rate of change of the volume of water in the tank, in \(\mathrm { m } ^ { 3 } \mathrm {~s} ^ { - 1 }\), when \(t = 2\).
- Verify that \(V\) has a stationary value when \(t = 1\).
- Determine whether this is a maximum or minimum value.