AQA C1 — Question 7

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
TopicDifferentiation Applications
TypeFind derivative of polynomial

7 The volume, \(V \mathrm {~m} ^ { 3 }\), of water in a tank at time \(t\) seconds is given by $$V = \frac { 1 } { 3 } t ^ { 6 } - 2 t ^ { 4 } + 3 t ^ { 2 } , \quad \text { for } t \geqslant 0$$
  1. Find:
    1. \(\frac { \mathrm { d } V } { \mathrm {~d} t }\);
      (3 marks)
    2. \(\frac { \mathrm { d } ^ { 2 } V } { \mathrm {~d} t ^ { 2 } }\).
      (2 marks)
  2. Find the rate of change of the volume of water in the tank, in \(\mathrm { m } ^ { 3 } \mathrm {~s} ^ { - 1 }\), when \(t = 2\).
    1. Verify that \(V\) has a stationary value when \(t = 1\).
    2. Determine whether this is a maximum or minimum value.
This paper (2 questions)
View full paper