AQA C1 2014 June — Question 3 4 marks

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2014
SessionJune
Marks4
TopicDifferentiation Applications
TypeFind derivative of polynomial

3 A curve has equation \(y = 2 x ^ { 5 } + 5 x ^ { 4 } - 1\).
  1. Find:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
  2. The point on the curve where \(x = - 1\) is \(P\).
    1. Determine whether \(y\) is increasing or decreasing at \(P\), giving a reason for your answer.
    2. Find an equation of the tangent to the curve at \(P\).
  3. The point \(Q ( - 2,15 )\) also lies on the curve. Verify that \(Q\) is a maximum point of the curve.
    [0pt] [4 marks]