Find derivative of polynomial

Differentiate polynomial expressions with integer and fractional powers, including simplification.

87 questions

Edexcel C1 2010 June Q7
  1. Given that
$$y = 8 x ^ { 3 } - 4 \sqrt { } x + \frac { 3 x ^ { 2 } + 2 } { x } , \quad x > 0$$ find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
(6)
Edexcel C1 2012 June Q7
7. The point \(P ( 4 , - 1 )\) lies on the curve \(C\) with equation \(y = \mathrm { f } ( x ) , x > 0\), and $$f ^ { \prime } ( x ) = \frac { 1 } { 2 } x - \frac { 6 } { \sqrt { } x } + 3$$
  1. Find the equation of the tangent to \(C\) at the point \(P\), giving your answer in the form \(y = m x + c\), where \(m\) and \(c\) are integers.
  2. Find \(\mathrm { f } ( x )\).
Edexcel C1 2013 June Q1
Given \(y = x ^ { 3 } + 4 x + 1\), find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(x = 3\)
Edexcel C1 2014 June Q4
4. Given that \(y = 2 x ^ { 5 } + \frac { 6 } { \sqrt { } x } , x > 0\), find in their simplest form
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. \(\int y \mathrm {~d} x\)
Edexcel C1 2014 June Q8
8. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 x ^ { - \frac { 1 } { 2 } } + x \sqrt { } x , \quad x > 0$$ Given that \(y = 37\) at \(x = 4\), find \(y\) in terms of \(x\), giving each term in its simplest form.
Edexcel C1 2014 June Q11
11. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6db8acbd-7f61-46ff-8fdc-f0f4a8363aa6-17_700_1556_276_201} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A sketch of part of the curve \(C\) with equation $$y = 20 - 4 x - \frac { 18 } { x } , \quad x > 0$$ is shown in Figure 3. Point \(A\) lies on \(C\) and has an \(x\) coordinate equal to 2
  1. Show that the equation of the normal to \(C\) at \(A\) is \(y = - 2 x + 7\) The normal to \(C\) at \(A\) meets \(C\) again at the point \(B\), as shown in Figure 3 .
  2. Use algebra to find the coordinates of \(B\).
Edexcel C1 2015 June Q3
Given that \(y = 4 x ^ { 3 } - \frac { 5 } { x ^ { 2 } } , x \neq 0\), find in their simplest form
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. \(\int y \mathrm {~d} x\)
Edexcel C1 2016 June Q7
  1. Given that
$$y = 3 x ^ { 2 } + 6 x ^ { \frac { 1 } { 3 } } + \frac { 2 x ^ { 3 } - 7 } { 3 \sqrt { } x } , \quad x > 0$$ find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Give each term in your answer in its simplified form.
Edexcel C1 2016 June Q11
11. The curve \(C\) has equation \(y = 2 x ^ { 3 } + k x ^ { 2 } + 5 x + 6\), where \(k\) is a constant.
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) The point \(P\), where \(x = - 2\), lies on \(C\). The tangent to \(C\) at the point \(P\) is parallel to the line with equation \(2 y - 17 x - 1 = 0\)
    Find
  2. the value of \(k\),
  3. the value of the \(y\) coordinate of \(P\),
  4. the equation of the tangent to \(C\) at \(P\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Edexcel C1 2017 June Q2
2. Given $$y = \sqrt { x } + \frac { 4 } { \sqrt { x } } + 4 , \quad x > 0$$ find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(x = 8\), writing your answer in the form \(a \sqrt { 2 }\), where \(a\) is a rational number.
(5)
Edexcel C1 2017 June Q7
7. The curve \(C\) has equation \(y = \mathrm { f } ( x ) , x > 0\), where $$\mathrm { f } ^ { \prime } ( x ) = 30 + \frac { 6 - 5 x ^ { 2 } } { \sqrt { x } }$$ Given that the point \(P ( 4 , - 8 )\) lies on \(C\),
  1. find the equation of the tangent to \(C\) at \(P\), giving your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants.
  2. Find \(\mathrm { f } ( x )\), giving each term in its simplest form.
Edexcel C1 2018 June Q2
  1. Given
$$y = 3 \sqrt { x } - 6 x + 4 , \quad x > 0$$
  1. find \(\int y \mathrm {~d} x\), simplifying each term.
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    2. Hence find the value of \(x\) such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
Edexcel C1 2018 June Q10
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{937246f9-2b6a-48df-b919-c6db3d6f863b-28_643_1171_260_518} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve \(C\) with equation $$y = \frac { 1 } { 2 } x + \frac { 27 } { x } - 12 , \quad x > 0$$ The point \(A\) lies on \(C\) and has coordinates \(\left( 3 , - \frac { 3 } { 2 } \right)\).
  1. Show that the equation of the normal to \(C\) at \(A\) can be written as \(10 y = 4 x - 27\) The normal to \(C\) at \(A\) meets \(C\) again at the point \(B\), as shown in Figure 3.
  2. Use algebra to find the coordinates of \(B\).
Edexcel C1 Q6
6. $$f ( x ) = \frac { ( 2 x + 1 ) ( x + 4 ) } { \sqrt { } x } , \quad x > 0$$
  1. Show that \(\mathrm { f } ( x )\) can be written in the form \(P x ^ { \frac { 3 } { 2 } } + Q x ^ { \frac { 1 } { 2 } } + R x ^ { - \frac { 1 } { 2 } }\), stating the values of the constants \(P , Q\) and \(R\).
  2. Find f \({ } ^ { \prime } ( x )\).
  3. Show that the tangent to the curve with equation \(y = \mathrm { f } ( x )\) at the point where \(x = 1\) is parallel to the line with equation \(2 y = 11 x + 3\).
    (3)
    6. continuedLeave blank
    \begin{center} \begin{tabular}{|l|l|} \hline \begin{tabular}{l}
Edexcel P2 2022 January Q2
2. In this question you must show all stages of your working. \section*{Solutions relying entirely on calculator technology are not acceptable.} The curve \(C\) has equation $$y = 27 x ^ { \frac { 1 } { 2 } } - x ^ { \frac { 3 } { 2 } } - 20 \quad x > 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving each term in simplest form.
  2. Hence find the coordinates of the stationary point of \(C\).
  3. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and hence determine the nature of the stationary point of \(C\).
Edexcel C2 2006 January Q7
7. The curve \(C\) has equation $$y = 2 x ^ { 3 } - 5 x ^ { 2 } - 4 x + 2$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Using the result from part (a), find the coordinates of the turning points of \(C\).
  3. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  4. Hence, or otherwise, determine the nature of the turning points of \(C\).
Edexcel C2 2010 June Q3
3. $$y = x ^ { 2 } - k \sqrt { } x , \text { where } k \text { is a constant. }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Given that \(y\) is decreasing at \(x = 4\), find the set of possible values of \(k\).
Edexcel C1 2005 January Q2
  1. Given that \(y = 5 x ^ { 3 } + 7 x + 3\), find
    (a) \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), (b) \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. Find \(\int \left( 1 + 3 \sqrt { } x - \frac { 1 } { x ^ { 2 } } \right) \mathrm { d } x\).
Edexcel C1 2007 June Q3
Given that \(y = 3 x ^ { 2 } + 4 \sqrt { } x , x > 0\), find
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\),
  3. \(\int y \mathrm {~d} x\).
Edexcel C1 2011 June Q2
Given that \(y = 2 x ^ { 5 } + 7 + \frac { 1 } { x ^ { 3 } } , x \neq 0\), find, in their simplest form, (a) \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
(b) \(\int y \mathrm {~d} x\).
OCR C1 2005 January Q7
7 Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in each of the following cases:
  1. \(y = \frac { 1 } { 2 } x ^ { 4 } - 3 x\),
  2. \(y = \left( 2 x ^ { 2 } + 3 \right) ( x + 1 )\),
  3. \(y = \sqrt [ 5 ] { x }\).
OCR C1 2007 January Q7
7 Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in each of the following cases.
  1. \(y = 5 x + 3\)
  2. \(y = \frac { 2 } { x ^ { 2 } }\)
  3. \(y = ( 2 x + 1 ) ( 5 x - 7 )\)
OCR C1 2005 June Q6
6 Given that \(\mathrm { f } ( x ) = ( x + 1 ) ^ { 2 } ( 3 x - 4 )\),
  1. express \(\mathrm { f } ( x )\) in the form \(a x ^ { 3 } + b x ^ { 2 } + c x + d\),
  2. find \(\mathrm { f } ^ { \prime } ( x )\),
  3. find \(\mathrm { f } ^ { \prime \prime } ( x )\).
OCR C1 2006 June Q1
1 The points \(A ( 1,3 )\) and \(B ( 4,21 )\) lie on the curve \(y = x ^ { 2 } + x + 1\).
  1. Find the gradient of the line \(A B\).
  2. Find the gradient of the curve \(y = x ^ { 2 } + x + 1\) at the point where \(x = 3\).
OCR C1 2007 June Q7
7
  1. Given that \(f ( x ) = x + \frac { 3 } { x }\), find \(f ^ { \prime } ( x )\).
  2. Find the gradient of the curve \(\mathrm { y } = \mathrm { x } ^ { \frac { 5 } { 2 } }\) at the point where \(\mathrm { x } = 4\).