3x3 Matrices

189 questions · 20 question types identified

Sort by: Question count | Difficulty
Rank and null space basis

Questions asking to find the rank of a matrix and/or a basis for its null space (kernel).

23 Challenging +1.3
12.2% of questions
Show example »
1 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\left( \begin{array} { r r r r } 1 & 5 & 2 & 6 \\ 2 & 0 & - 1 & 7 \\ 3 & - 1 & - 2 & 10 \\ 4 & 10 & 13 & 29 \end{array} \right)$$ Find the dimension of the null space of T .
View full question →
Easiest question Challenging +1.2 »
3 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M } = \left( \begin{array} { r r r r } 1 & 3 & - 2 & 4 \\ 5 & 15 & - 9 & 19 \\ - 2 & - 6 & 3 & - 7 \\ 3 & 9 & - 5 & 11 \end{array} \right)\).
  1. Find the rank of \(\mathbf { M }\).
  2. Obtain a basis for the null space of T .
View full question →
Hardest question Challenging +1.8 »
The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices \(\mathbf { M } _ { 1 }\) and \(\mathbf { M } _ { 2 }\), respectively, where $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & 1 & 1 & 2 \\ 1 & 4 & 7 & 8 \\ 1 & 7 & 11 & 13 \\ 1 & 2 & 5 & 5 \end{array} \right) , \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 2 & 0 & - 1 & - 1 \\ 5 & 1 & - 3 & - 3 \\ 3 & - 1 & - 1 & - 1 \\ 13 & - 1 & - 6 & - 6 \end{array} \right) .$$
  1. Find a basis for \(R _ { 1 }\), the range space of \(\mathrm { T } _ { 1 }\).
  2. Find a basis for \(K _ { 2 }\), the null space of \(\mathrm { T } _ { 2 }\), and hence show that \(K _ { 2 }\) is a subspace of \(R _ { 1 }\). The set of vectors which belong to \(R _ { 1 }\) but do not belong to \(K _ { 2 }\) is denoted by \(W\).
  3. State whether \(W\) is a vector space, justifying your answer. The linear transformation \(\mathrm { T } _ { 3 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is the result of applying \(\mathrm { T } _ { 1 }\) and then \(\mathrm { T } _ { 2 }\), in that order.
  4. Find the dimension of the null space of \(\mathrm { T } _ { 3 }\).
View full question →
Solving 3×3 systems using inverse

Questions asking to solve a system of three linear equations in three unknowns using matrix inverse methods.

22 Standard +0.2
11.6% of questions
Show example »
4. Solve the simultaneous equations $$\begin{aligned} 4 x - 2 y + 3 z & = 8 \\ 2 x - 3 y + 8 z & = - 1 \\ 2 x + 4 y - z & = 0 \end{aligned}$$
View full question →
Easiest question Moderate -0.5 »
4. Solve the simultaneous equations $$\begin{aligned} 4 x - 2 y + 3 z & = 8 \\ 2 x - 3 y + 8 z & = - 1 \\ 2 x + 4 y - z & = 0 \end{aligned}$$
View full question →
Hardest question Standard +0.8 »
8 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { r r r } a & 2 & - 1 \\ 2 & 3 & - 1 \\ 2 & - 1 & 1 \end{array} \right)\), where \(a\) is a constant.
  1. Show that the determinant of \(\mathbf { M }\) is \(2 a\).
  2. Given that \(a \neq 0\), find the inverse matrix \(\mathbf { M } ^ { - 1 }\).
  3. Hence or otherwise solve the simultaneous equations $$\begin{array} { r } x + 2 y - z = 1 \\ 2 x + 3 y - z = 2 \\ 2 x - y + z = 0 \end{array}$$
  4. Find the value of \(k\) for which the simultaneous equations $$\begin{array} { r } 2 y - z = k \\ 2 x + 3 y - z = 2 \\ 2 x - y + z = 0 \end{array}$$ have solutions.
  5. Do the equations in part (iv), with the value of \(k\) found, have a solution for which \(x = z\) ? Justify your answer.
View full question →
Parameter values for unique solution

Questions asking to find parameter values for which a 3×3 system has (or does not have) a unique solution, typically using determinant conditions.

20 Standard +0.5
10.6% of questions
Show example »
2 Find the set of values of \(a\) for which the system of equations $$\begin{aligned} a x + y + 2 z & = 0 \\ 3 x - 2 y & = 4 \\ 3 x - 4 y - 6 a z & = 14 \end{aligned}$$ has a unique solution.
View full question →
Easiest question Standard +0.3 »
1
  1. Find the set of values of \(k\) for which the system of equations $$\begin{aligned} x + 2 y + 3 z & = 1 \\ k x + 4 y + 6 z & = 0 \\ 7 x + 8 y + 9 z & = 3 \end{aligned}$$ has a unique solution.
  2. Interpret the situation geometrically in the case where the system of equations does not have a unique solution.
View full question →
Hardest question Challenging +1.2 »
14 Three planes have equations $$\begin{aligned} - x + a y & = 2 \\ 2 x + 3 y + z & = - 3 \\ x + b y + z & = c \end{aligned}$$ where \(a\), \(b\) and \(c\) are constants.
  1. In the case where the planes do not intersect at a unique point,
    1. find \(b\) in terms of \(a\),
    2. find the value of \(c\) for which the planes form a sheaf.
  2. In the case where \(b = a\) and \(c = 1\), find the coordinates of the point of intersection of the planes in terms of \(a\).
View full question →
Diagonalization and matrix powers

Questions requiring finding matrices P and D such that A = PDP⁻¹ or similar, often to compute matrix powers A^n.

14 Standard +0.8
7.4% of questions
Show example »
8 Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A } = \left( \begin{array} { r r r } 4 & - 1 & 1 \\ - 1 & 0 & - 3 \\ 1 & - 3 & 0 \end{array} \right)\). Find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).
View full question →
Easiest question Standard +0.3 »
3. $$\mathbf { A } = \left( \begin{array} { l l l } 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{array} \right)$$
  1. Find the eigenvalues of \(\mathbf { A }\).
  2. Find a normalised eigenvector for each of the eigenvalues of \(\mathbf { A }\).
  3. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { P } ^ { \mathrm { T } } \mathbf { A P } = \mathbf { D }\).
View full question →
Hardest question Challenging +1.2 »
3 Let \(\mathbf { P } = \left( \begin{array} { r r r } 4 & 2 & k \\ 1 & 1 & 3 \\ 1 & 0 & - 1 \end{array} \right) (\) where \(k \neq 4 )\) and \(\mathbf { M } = \left( \begin{array} { r r r } 2 & - 2 & - 6 \\ - 1 & 3 & 1 \\ 1 & - 2 & - 2 \end{array} \right)\).
  1. Find \(\mathbf { P } ^ { - 1 }\) in terms of \(k\), and show that, when \(k = 2 , \mathbf { P } ^ { - 1 } = \frac { 1 } { 2 } \left( \begin{array} { r r r } - 1 & 2 & 4 \\ 4 & - 6 & - 10 \\ - 1 & 2 & 2 \end{array} \right)\).
  2. Verify that \(\left( \begin{array} { l } 4 \\ 1 \\ 1 \end{array} \right) , \left( \begin{array} { l } 2 \\ 1 \\ 0 \end{array} \right)\) and \(\left( \begin{array} { r } 2 \\ 3 \\ - 1 \end{array} \right)\) are eigenvectors of \(\mathbf { M }\), and find the corresponding eigenvalues.
  3. Show that \(\mathbf { M } ^ { n } = \left( \begin{array} { r r r } 4 & - 6 & - 10 \\ 2 & - 3 & - 5 \\ 0 & 0 & 0 \end{array} \right) + 2 ^ { n - 1 } \left( \begin{array} { r r r } - 2 & 4 & 4 \\ - 3 & 6 & 6 \\ 1 & - 2 & - 2 \end{array} \right)\). Section B (18 marks)
View full question →
General solution with parameters

Questions asking for the general solution of a system (often underdetermined) expressed in parametric form with free variables.

13 Standard +0.9
6.9% of questions
Show example »
2 Find the value of the constant \(k\) for which the system of equations $$\begin{aligned} 2 x - 3 y + 4 z & = 1 \\ 3 x - y & = 2 \\ x + 2 y + k z & = 1 \end{aligned}$$ does not have a unique solution. For this value of \(k\), solve the system of equations.
View full question →
Easiest question Standard +0.3 »
3
  1. Find the inverse of the matrix $$\left( \begin{array} { r r r } 1 & 1 & a \\ 2 & - 1 & 2 \\ 3 & - 2 & 2 \end{array} \right)$$ where \(a \neq 4\).
    Show that when \(a = - 1\) the inverse is $$\frac { 1 } { 5 } \left( \begin{array} { r r r } 2 & 0 & 1 \\ 2 & 5 & - 4 \\ - 1 & 5 & - 3 \end{array} \right)$$
  2. Solve, in terms of \(b\), the following system of equations. $$\begin{aligned} x + y - z & = - 2 \\ 2 x - y + 2 z & = b \\ 3 x - 2 y + 2 z & = 1 \end{aligned}$$
  3. Find the value of \(b\) for which the equations $$\begin{aligned} x + y + 4 z & = - 2 \\ 2 x - y + 2 z & = b \\ 3 x - 2 y + 2 z & = 1 \end{aligned}$$ have solutions. Give a geometrical interpretation of the solutions in this case. Section B (18 marks)
View full question →
Hardest question Challenging +1.2 »
3
  1. Find the value of \(a\) for which the matrix $$\mathbf { M } = \left( \begin{array} { r r r } 1 & 2 & 3 \\ - 1 & a & 4 \\ 3 & - 2 & 2 \end{array} \right)$$ does not have an inverse.
    Assuming that \(a\) does not have this value, find the inverse of \(\mathbf { M }\) in terms of \(a\).
  2. Hence solve the following system of equations. $$\begin{aligned} x + 2 y + 3 z & = 1 \\ - x + 4 z & = - 2 \\ 3 x - 2 y + 2 z & = 1 \end{aligned}$$
  3. Find the value of \(b\) for which the following system of equations has a solution. $$\begin{aligned} x + 2 y + 3 z & = 1 \\ - x + 6 y + 4 z & = - 2 \\ 3 x - 2 y + 2 z & = b \end{aligned}$$ Find the general solution in this case and describe the solution geometrically.
View full question →
Matrix equation solving (AB = C)

Questions where a matrix equation like AB = C or similar must be solved to find unknown matrices or parameters.

12 Standard +0.0
6.3% of questions
Show example »
1. The matrix \(\mathbf { M }\) is such that \(\mathbf { M } \left( \begin{array} { r r r } 1 & 0 & k \\ 2 & - 1 & 1 \end{array} \right) = \left( \begin{array} { l l l } 1 & - 2 & 0 \end{array} \right)\).
Find
  • the matrix \(\mathbf { M }\),
  • the value of the constant \(k\).
    [0pt] [BLANK PAGE]
View full question →
Easiest question Easy -1.8 »
2 Three matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by \(\mathbf { A } = \left[ \begin{array} { c c c } 5 & 2 & - 3 \\ 0 & 7 & 6 \\ 4 & 1 & 0 \end{array} \right]\), \(\mathbf { B } = \left[ \begin{array} { c c } 1 & 0 \\ 3 & - 5 \\ - 2 & 6 \end{array} \right]\) and \(\mathbf { C } = \left[ \begin{array} { l l l } 6 & 4 & 3 \\ 1 & 2 & 0 \end{array} \right]\) Which of the following cannot be calculated?
Circle your answer.
[0pt] [1 mark]
AB
AC
BC \(\mathrm { A } ^ { \mathbf { 2 } }\)
View full question →
Hardest question Standard +0.8 »
10 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { r r r } a & 8 & 10 \\ 2 & 1 & 2 \\ 4 & 3 & 6 \end{array} \right)\). The matrix \(\mathbf { B }\) is such that \(\mathbf { A B } = \left( \begin{array} { l l l } a & 6 & 1 \\ 1 & 1 & 0 \\ 1 & 3 & 0 \end{array} \right)\).
  1. Show that \(\mathbf { A B }\) is non-singular.
  2. Find \(( \mathbf { A B } ) ^ { - 1 }\).
  3. Find \(\mathbf { B } ^ { - 1 }\).
View full question →
Determinant calculation and singularity

Questions asking to find the determinant of a 3×3 matrix, often in terms of a parameter, and/or determine values making the matrix singular.

10 Standard +0.2
5.3% of questions
Show example »
1 Find the determinant of the matrix \(\left( \begin{array} { r r r } a & 4 & - 1 \\ 3 & a & 2 \\ a & 1 & 1 \end{array} \right)\).
View full question →
Easiest question Moderate -0.8 »
3 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { l l l } 2 & 1 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{array} \right)\).
  1. Find the value of the determinant of \(\mathbf { M }\).
  2. State, giving a brief reason, whether \(\mathbf { M }\) is singular or non-singular.
View full question →
Hardest question Challenging +1.8 »
5 A trading company deals in two goods. The formula used to estimate \(z\), the total weekly cost to the company of trading the two goods, in tens of thousands of pounds, is \(z = 0.9 x + \frac { 0.096 y } { x } - x ^ { 2 } y ^ { 2 }\),
where \(x\) and \(y\) are the masses, in thousands of tonnes, of the two goods. You are given that \(x > 0\) and \(y > 0\).
  1. In the first week of trading, it was found that the values of \(x\) and \(y\) corresponded to the stationary value of \(z\). Determine the total cost to the company for this week.
  2. For the second week, the company intends to make a small change in either \(x\) or \(y\) in order to reduce the total weekly cost. Determine whether the company should change \(x\) or \(y\). (You are not expected to say by how much the company should reduce its costs.)
View full question →
Transformation mapping problems

Questions where a matrix represents a geometric transformation and you must find the image or pre-image of lines, planes, or points.

9 Standard +0.6
4.8% of questions
Show example »
5 Describe fully the transformation given by the matrix \(\left[ \begin{array} { c c c } - \frac { 1 } { 2 } & - \frac { \sqrt { 3 } } { 2 } & 0 \\ \frac { \sqrt { 3 } } { 2 } & - \frac { 1 } { 2 } & 0 \\ 0 & 0 & 1 \end{array} \right]\)
View full question →
Easiest question Moderate -0.3 »
3 You are given the matrix \(\mathbf { A } = \left( \begin{array} { c c c } 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & - 1 & 0 \end{array} \right)\).
  1. Find \(\mathbf { A } ^ { 4 }\).
  2. Describe the transformation that \(\mathbf { A }\) represents. The matrix \(\mathbf { B }\) represents a reflection in the plane \(x = 0\).
  3. Write down the matrix \(\mathbf { B }\). The point \(P\) has coordinates (2, 3, 4). The point \(P ^ { \prime }\) is the image of \(P\) under the transformation represented by \(\mathbf { B }\).
  4. Find the coordinates of \(P ^ { \prime }\).
View full question →
Hardest question Challenging +1.2 »
6. $$\mathbf { A } = \left( \begin{array} { r r r } 1 & - 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & a \end{array} \right) \quad a \neq 1$$
  1. Find \(\mathbf { A } ^ { - 1 }\) in terms of \(a\).
    . The straight line \(l _ { 1 }\) is mapped onto the straight line \(l _ { 2 }\) by the transformation represented by the matrix \(\mathbf { B }\). $$\mathbf { B } = \left( \begin{array} { r r r } 1 & - 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{array} \right)$$ The equation of \(l _ { 2 }\) is $$( \mathbf { r } - ( 12 \mathbf { i } + 4 \mathbf { j } + 6 \mathbf { k } ) ) \times ( - 6 \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } ) = \mathbf { 0 }$$
  2. Find a vector equation for the line \(l _ { 1 }\)
View full question →
Geometric interpretation of systems

Questions requiring interpretation of the solution set of a 3×3 system as planes in 3D space (intersection point, sheaf, prism, or no solution).

9 Standard +0.9
4.8% of questions
Show example »
8 The equations of three planes are $$\begin{array} { r } 2 x + y + 3 z = 3 \\ 3 x - y - 2 z = 2 \\ - 4 x + 3 y + 7 z = k \end{array}$$ where \(k\) is a constant.
  1. By considering a suitable determinant, show that the planes do not meet at a single point.
  2. Given that the planes form a sheaf, determine the value of \(k\).
View full question →
Easiest question Standard +0.3 »
10 Three planes have equations $$\begin{aligned} - x + 2 y + z & = 0 \\ 2 x - y - z & = 0 \\ x + y & = a \end{aligned}$$ where \(a\) is a constant.
  1. Investigate the arrangement of the planes:
    • when \(a = 0\);
    • when \(a \neq 0\).
    • Chris claims that the position vectors \(- \mathbf { i } + 2 \mathbf { j } + \mathbf { k } , 2 \mathbf { i } - \mathbf { j } - \mathbf { k }\) and \(\mathbf { i } + \mathbf { j }\) lie in a plane. Determine whether or not Chris is correct.
View full question →
Hardest question Challenging +1.8 »
11. Three planes have equations $$\begin{aligned} ( 4 k + 1 ) x - 3 y + ( k - 5 ) z & = 3 \\ ( k - 1 ) x + ( 3 - k ) y + 2 z & = 1 \\ 7 x - 3 y + 4 z & = 2 \end{aligned}$$
  1. The planes do not meet at a unique point. Show that \(k = 4.5\) is one possible value of \(k\), and find the other possible value of \(k\).
  2. For each value of \(k\) found in part (a), identify the configuration of the given planes. In each case fully justify your answer, stating whether or not the equations of the planes form a consistent system.
    [0pt] [BLANK PAGE]
View full question →
Range space basis and dimension

Questions asking to find the dimension and/or a basis for the range space (column space) of a linear transformation.

7 Challenging +1.5
3.7% of questions
Show example »
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 2 & 1 & - 1 & 4 \\ 3 & 4 & 6 & 1 \\ - 1 & 2 & 8 & - 7 \end{array} \right)$$ The range space of T is \(R\). In any order,
  1. show that the dimension of \(R\) is 2 ,
  2. find a basis for \(R\) and obtain a cartesian equation for \(R\),
  3. find a basis for the null space of T . The vector \(\left( \begin{array} { l } 8 \\ 7 \\ k \end{array} \right)\) belongs to \(R\). Find the value of \(k\) and, with this value of \(k\), find the general solution of $$\mathbf { M x } = \left( \begin{array} { l } 8 \\ 7 \\ k \end{array} \right)$$
View full question →
Eigenvalues and eigenvectors

Questions asking to find eigenvalues and corresponding eigenvectors of a 3×3 matrix.

7 Standard +0.6
3.7% of questions
Show example »
3. $$\mathbf { M } = \left( \begin{array} { r r r } 6 & 1 & - 1 \\ 0 & 7 & 0 \\ 3 & - 1 & 2 \end{array} \right)$$
  1. Show that 7 is an eigenvalue of the matrix \(\mathbf { M }\) and find the other two eigenvalues of \(\mathbf { M }\).
  2. Find an eigenvector corresponding to the eigenvalue 7.
View full question →
Matrix inverse calculation

Questions requiring calculation of the inverse of a 3×3 matrix, either numerically or in terms of a parameter.

7 Standard +0.3
3.7% of questions
Show example »
6 The matrix \(\mathbf { C }\) is given by \(\mathbf { C } = \left( \begin{array} { r r r } a & 1 & 0 \\ 1 & 2 & 1 \\ - 1 & 3 & 4 \end{array} \right)\), where \(a \neq 1\). Find \(\mathbf { C } ^ { - 1 }\).
View full question →
Volume/area scale factors

Questions involving the relationship between determinants and volume or area scale factors of transformations.

6 Standard +0.9
3.2% of questions
Show example »
4. The matrix \(\mathbf { M }\) is given by $$\left( \begin{array} { r r r } 2 & 0 & - 1 \\ k & 3 & 2 \\ - 2 & 1 & k \end{array} \right)$$
  1. Show that \(\operatorname { det } \mathbf { M } = 5 k - 10\) Given that \(k \neq 2\)
  2. find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\). The points \(O ( 0,0,0 ) , A ( 4 , - 8,3 ) , B ( - 2,5 , - 4 )\) and \(C ( 4 , - 6,8 )\) are the vertices of a tetrahedron \(T\). The transformation represented by matrix \(\mathbf { M }\) transforms \(T\) to a tetrahedron with volume 50
  3. Determine the possible values of \(k\).
View full question →
Consistency conditions for systems

Questions asking to find parameter values for which an inconsistent-looking system becomes consistent (has solutions).

6 Challenging +1.1
3.2% of questions
Show example »
5 Show that if \(a \neq 3\) then the system of equations $$\begin{aligned} & 2 x + 3 y + 4 z = - 5 \\ & 4 x + 5 y - z = 5 a + 15 \\ & 6 x + 8 y + a z = b - 2 a + 21 \end{aligned}$$ has a unique solution. Given that \(a = 3\), find the value of \(b\) for which the equations are consistent.
View full question →
Matrix properties verification

Questions asking to verify or show specific matrix properties like (AB)^T = B^T A^T, orthogonality, or given inverse relationships.

6 Moderate -0.6
3.2% of questions
Show example »
1 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { c c c } k & 1 & 0 \\ 6 & 5 & 2 \\ - 1 & 3 & - k \end{array} \right)$$ where \(k\) is a real constant.
  1. Show that \(\mathbf { A }\) is non-singular.
  2. Given that \(\mathbf { A } ^ { - 1 } = \left( \begin{array} { c c c } 3 & 0 & - 1 \\ 1 & 0 & 0 \\ - \frac { 23 } { 2 } & \frac { 1 } { 2 } & 3 \end{array} \right)\), find the value of \(k\).
View full question →
Linear independence and spanning

Questions asking whether given vectors are linearly independent or form a basis for a vector space.

3 Standard +0.6
1.6% of questions
Show example »
1
- 1
1 \end{array} \right] \quad \left[ \begin{array} { l } 3
0
View full question →
Adjugate matrix calculation

Questions specifically asking to find the adjugate (adjoint) matrix of a 3×3 matrix.

1 Standard +0.3
0.5% of questions
Show example »
10. The matrix \(\mathbf { A }\) is defined by $$\mathbf { A } = \left( \begin{array} { r r r } 4 & 8 & 0 \\ 0 & \lambda & - 2 \\ 4 & 0 & \lambda \end{array} \right)$$
  1. Show that there are two values of \(\lambda\) for which \(\mathbf { A }\) is singular.
  2. Given that \(\lambda = 3\),
    1. determine the adjugate matrix of \(\mathbf { A }\),
    2. determine the inverse matrix \(\mathbf { A } ^ { - 1 }\).
View full question →
Normalised eigenvectors

Questions specifically asking to find normalised (unit) eigenvectors corresponding to given eigenvalues.

1 Standard +0.8
0.5% of questions
Show example »
  1. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
$$\mathbf { M } = \left( \begin{array} { r r r } 2 & 0 & 3 \\ 0 & - 4 & - 3 \\ 0 & - 4 & 0 \end{array} \right)$$ Given that \(\mathbf { M }\) has exactly two distinct eigenvalues \(\lambda _ { 1 }\) and \(\lambda _ { 2 }\) where \(\lambda _ { 1 } < \lambda _ { 2 }\)
  1. determine a normalised eigenvector corresponding to the eigenvalue \(\lambda _ { 1 }\) The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 4 \\ - 1 \\ 0 \end{array} \right) + \mu \left( \begin{array} { r } 2 \\ 0 \\ - 1 \end{array} \right)\), where \(\mu\) is a scalar parameter.
    The transformation \(T\) is represented by \(\mathbf { M }\).
    The line \(l _ { 1 }\) is transformed by \(T\) to the line \(l _ { 2 }\)
  2. Determine a vector equation for \(l _ { 2 }\), giving your answer in the form \(\mathbf { r } \times \mathbf { b } = \mathbf { c }\) where \(\mathbf { b }\) and \(\mathbf { c }\) are constant vectors.
View full question →
Matrix transpose properties

Questions involving matrix transpose operations, finding A^T, or verifying transpose identities.

0
0.0% of questions
Cayley-Hamilton and characteristic equation

Questions involving the characteristic equation of a matrix and using the Cayley-Hamilton theorem to find matrix expressions.

0
0.0% of questions
Unclassified

Questions not yet assigned to a type.

13
6.9% of questions
Show 13 unclassified »
10 Find the set of values of \(a\) for which the system of equations $$\begin{aligned} x + 4 y + 12 z & = 5 \\ 2 x + a y + 12 z & = a - 1 \\ 3 x + 12 y + 2 a z & = 10 \end{aligned}$$ has a unique solution. Show that the system does not have any solution in the case \(a = 18\). Given that \(a = 8\), show that the number of solutions is infinite and find the solution for which \(x + y + z = 1\).
3 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M } = \left( \begin{array} { r r r r } 1 & 3 & - 2 & 4 \\ 5 & 15 & - 9 & 19 \\ - 2 & - 6 & 3 & - 7 \\ 3 & 9 & - 5 & 11 \end{array} \right)\).
  1. Find the rank of \(\mathbf { M }\).
  2. Obtain a basis for the null space of T .
8 The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices \(\mathbf { M } _ { 1 }\) and \(\mathbf { M } _ { 2 }\) respectively, where $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & - 2 & 3 & 5 \\ 3 & - 4 & 17 & 33 \\ 5 & - 9 & 20 & 36 \\ 4 & - 7 & 16 & 29 \end{array} \right) \quad \text { and } \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 1 & - 2 & 0 & - 3 \\ 2 & - 1 & 0 & 0 \\ 4 & - 7 & 1 & - 9 \\ 6 & - 10 & 0 & - 14 \end{array} \right) .$$ The null spaces of \(\mathrm { T } _ { 1 }\) and \(\mathrm { T } _ { 2 }\) are denoted by \(K _ { 1 }\) and \(K _ { 2 }\) respectively. Find a basis for \(K _ { 1 }\) and a basis for \(K _ { 2 }\). It is given that \(\mathbf { a } = \left( \begin{array} { l } 1 \\ 2 \\ 3 \\ 4 \end{array} \right)\). The vectors \(\mathbf { x } _ { 1 }\) and \(\mathbf { x } _ { 2 }\) are such that \(\mathbf { M } _ { 1 } \mathbf { x } _ { 1 } = \mathbf { M } _ { 1 } \mathbf { a }\) and \(\mathbf { M } _ { 2 } \mathbf { x } _ { 2 } = \mathbf { M } _ { 2 } \mathbf { a }\). Given that \(\mathbf { x } _ { 1 } - \mathbf { x } _ { 2 } = \left( \begin{array} { c } p \\ 5 \\ 7 \\ q \end{array} \right)\), find \(p\) and \(q\).
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 2 & - 1 & 1 & 3 \\ 2 & 0 & 0 & 5 \\ 6 & - 2 & 2 & 11 \\ 10 & - 3 & 3 & 19 \end{array} \right)$$
  1. Find the rank of \(\mathbf { M }\) and state a basis for the range space of T .
  2. Obtain a basis for the null space of T .
9 The matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r } - 2 & 2 & 2 \\ 2 & 1 & 2 \\ - 3 & - 6 & - 7 \end{array} \right)$$ has an eigenvector \(\left( \begin{array} { r } 0 \\ 1 \\ - 1 \end{array} \right)\). Find the corresponding eigenvalue. It is given that if the eigenvalues of a general \(3 \times 3\) matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { l l l } a & b & c \\ d & e & f \\ g & h & i \end{array} \right)$$ are \(\lambda _ { 1 } , \lambda _ { 2 }\) and \(\lambda _ { 3 }\) then $$\lambda _ { 1 } + \lambda _ { 2 } + \lambda _ { 3 } = a + e + i$$ and the determinant of \(\mathbf { A }\) has the value \(\lambda _ { 1 } \lambda _ { 2 } \lambda _ { 3 }\). Use these results to find the other two eigenvalues of the matrix \(\mathbf { M }\), and find corresponding eigenvectors.
8 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r c r } 1 & 2 & \alpha & - 1 \\ 2 & 6 & - 3 & - 3 \\ 3 & 10 & - 6 & - 5 \end{array} \right)$$ and \(\alpha\) is a constant. When \(\alpha \neq 0\) the null space of T is denoted by \(K _ { 1 }\).
  1. Find a basis for \(K _ { 1 }\).
    When \(\alpha = 0\) the null space of T is denoted by \(K _ { 2 }\).
  2. Find a basis for \(K _ { 2 }\).
  3. Determine, justifying your answer, whether \(K _ { 1 }\) is a subspace of \(K _ { 2 }\).
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\mathbf { M } = \left( \begin{array} { r r r r } - 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & - 1 \\ 1 & - 2 & - 3 & a \\ 1 & 2 & 5 & 2 \end{array} \right) .$$
  1. For \(a \neq - 4\), the range space of T is denoted by \(V\).
    (a) Find the dimension of \(V\) and show that $$\left( \begin{array} { r } - 1 \\ 1 \\ 1 \\ 1 \end{array} \right) , \quad \left( \begin{array} { r } 2 \\ 0 \\ - 2 \\ 2 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } 4 \\ - 1 \\ a \\ 2 \end{array} \right)$$ form a basis for \(V\).
    (b) Show that if \(\left( \begin{array} { l } x \\ y \\ z \\ t \end{array} \right)\) belongs to \(V\) then \(x + 2 y = t\).
  2. For \(a = - 4\), find the general solution of $$\mathbf { M } \mathbf { x } = \left( \begin{array} { r } - 1 \\ 1 \\ 1 \\ 1 \end{array} \right)$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
4 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 3 & 4 & 2 & 5 \\ 6 & 7 & 5 & 8 \\ 9 & 9 & 9 & 9 \\ 15 & 16 & 14 & 17 \end{array} \right)$$ Find
  1. the rank of \(\mathbf { M }\) and a basis for the range space of T ,
  2. a basis for the null space of T .
5 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & 3 & 5 & 7 \\ 2 & 8 & 7 & 9 \\ 3 & 13 & 9 & 11 \\ 6 & 24 & 21 & 27 \end{array} \right)$$ Find
  1. the rank of \(\mathbf { A }\),
  2. a basis for the range space of T ,
  3. a basis for the null space of T .
1 The vectors \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) and \(\mathbf { d }\) in \(\mathbb { R } ^ { 3 }\) are given by $$\mathbf { a } = \left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right) , \quad \mathbf { b } = \left( \begin{array} { l } 2 \\ 9 \\ 0 \end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { l } 3 \\ 3 \\ 4 \end{array} \right) \quad \text { and } \quad \mathbf { d } = \left( \begin{array} { r } 0 \\ - 8 \\ 3 \end{array} \right) .$$
  1. Show that \(\{ \mathbf { a } , \mathbf { b } , \mathbf { c } \}\) is a basis for \(\mathbb { R } ^ { 3 }\).
  2. Express \(\mathbf { d }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\).
10 The matrix \(\mathbf { A }\) is defined by $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 5 & 1 \\ 1 & - 2 & - 2 \\ 2 & 3 & \theta \end{array} \right)$$
  1. (a) Find the rank of \(\mathbf { A }\) when \(\theta \neq - 1\).
    (b) Find the rank of \(\mathbf { A }\) when \(\theta = - 1\).
    Consider the system of equations $$\begin{aligned} x + 5 y + z & = - 1 \\ x - 2 y - 2 z & = 0 \\ 2 x + 3 y + \theta z & = \theta \end{aligned}$$
  2. Solve the system of equations when \(\theta \neq - 1\).
  3. Find the general solution when \(\theta = - 1\).
  4. Show that if \(\theta = - 1\) and \(\phi \neq - 1\) then \(\mathbf { A } \mathbf { x } = \left( \begin{array} { r } - 1 \\ 0 \\ \phi \end{array} \right)\) has no solution.
10 The matrix \(\mathbf { A }\) is defined by $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 5 & 1 \\ 1 & - 2 & - 2 \\ 2 & 3 & \theta \end{array} \right)$$
  1. (a) Find the rank of \(\mathbf { A }\) when \(\theta \neq - 1\).
    (b) Find the rank of \(\mathbf { A }\) when \(\theta = - 1\).
    Consider the system of equations $$\begin{aligned} x + 5 y + z & = - 1 \\ x - 2 y - 2 z & = 0 \\ 2 x + 3 y + \theta z & = \theta \end{aligned}$$
  2. Solve the system of equations when \(\theta \neq - 1\).
  3. Find the general solution when \(\theta = - 1\).
  4. Show that if \(\theta = - 1\) and \(\phi \neq - 1\) then \(\mathbf { A } \mathbf { x } = \left( \begin{array} { r } - 1 \\ 0 \\ \phi \end{array} \right)\) has no solution.
2
  1. Show that the system of equations $$\begin{aligned} & x - y + 2 z = 4 \\ & x - y - 3 z = a \\ & x - y + 7 z = 13 \end{aligned}$$ where \(a\) is a constant, does not have a unique solution.
  2. Given that \(a = - 5\), show that the system of equations in part (a) is consistent. Interpret this situation geometrically.
  3. Given instead that \(a \neq - 5\), show that the system of equations in part (a) is inconsistent. Interpret this situation geometrically.