OCR FP1 Specimen — Question 8

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
SessionSpecimen
Topic3x3 Matrices

8 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { r r r } a & 2 & - 1
2 & 3 & - 1
2 & - 1 & 1 \end{array} \right)\), where \(a\) is a constant.
  1. Show that the determinant of \(\mathbf { M }\) is \(2 a\).
  2. Given that \(a \neq 0\), find the inverse matrix \(\mathbf { M } ^ { - 1 }\).
  3. Hence or otherwise solve the simultaneous equations $$\begin{array} { r } x + 2 y - z = 1
    2 x + 3 y - z = 2
    2 x - y + z = 0 \end{array}$$
  4. Find the value of \(k\) for which the simultaneous equations $$\begin{array} { r } 2 y - z = k
    2 x + 3 y - z = 2
    2 x - y + z = 0 \end{array}$$ have solutions.
  5. Do the equations in part (iv), with the value of \(k\) found, have a solution for which \(x = z\) ? Justify your answer.