OCR MEI FP2 2010 January — Question 3

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJanuary
Topic3x3 Matrices

3
  1. Find the inverse of the matrix $$\left( \begin{array} { r r r } 1 & 1 & a
    2 & - 1 & 2
    3 & - 2 & 2 \end{array} \right)$$ where \(a \neq 4\).
    Show that when \(a = - 1\) the inverse is $$\frac { 1 } { 5 } \left( \begin{array} { r r r } 2 & 0 & 1
    2 & 5 & - 4
    - 1 & 5 & - 3 \end{array} \right)$$
  2. Solve, in terms of \(b\), the following system of equations. $$\begin{aligned} x + y - z & = - 2
    2 x - y + 2 z & = b
    3 x - 2 y + 2 z & = 1 \end{aligned}$$
  3. Find the value of \(b\) for which the equations $$\begin{aligned} x + y + 4 z & = - 2
    2 x - y + 2 z & = b
    3 x - 2 y + 2 z & = 1 \end{aligned}$$ have solutions. Give a geometrical interpretation of the solutions in this case. Section B (18 marks)