Matrix properties verification

Questions asking to verify or show specific matrix properties like (AB)^T = B^T A^T, orthogonality, or given inverse relationships.

6 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2024 June Q1
5 marks Standard +0.3
1 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { c c c } k & 1 & 0 \\ 6 & 5 & 2 \\ - 1 & 3 & - k \end{array} \right)$$ where \(k\) is a real constant.
  1. Show that \(\mathbf { A }\) is non-singular.
  2. Given that \(\mathbf { A } ^ { - 1 } = \left( \begin{array} { c c c } 3 & 0 & - 1 \\ 1 & 0 & 0 \\ - \frac { 23 } { 2 } & \frac { 1 } { 2 } & 3 \end{array} \right)\), find the value of \(k\).
Edexcel F3 2017 June Q2
6 marks Moderate -0.8
2. $$\mathbf { A } = \left( \begin{array} { r r r } - 1 & 3 & a \\ 2 & 0 & 1 \\ 1 & - 2 & 1 \end{array} \right) , \quad \mathbf { B } = \left( \begin{array} { r r r } 2 & 0 & 4 \\ 3 & - 2 & 3 \\ 1 & 2 & b \end{array} \right)$$ where \(a\) and \(b\) are constants.
  1. Write down \(\mathbf { A } ^ { \mathrm { T } }\) in terms of \(a\).
  2. Calculate \(\mathbf { A B }\), giving your answer in terms of \(a\) and \(b\).
  3. Hence show that $$( \mathbf { A B } ) ^ { \mathrm { T } } = \mathbf { B } ^ { \mathrm { T } } \mathbf { A } ^ { \mathrm { T } }$$
OCR MEI Further Pure Core 2019 June Q3
7 marks Moderate -0.8
3 Matrices \(\mathbf { A }\) and \(\mathbf { B }\) are defined by \(\mathbf { A } = \left( \begin{array} { l l } 3 & 1 \\ 2 & 1 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { l l } k & 1 \\ 2 & 0 \end{array} \right)\), where \(k\) is a constant.
  1. Verify the result \(( \mathbf { A B } ) ^ { - 1 } = \mathbf { B } ^ { - 1 } \mathbf { A } ^ { - 1 }\) in this case.
  2. Investigate whether \(\mathbf { A }\) and \(\mathbf { B }\) are commutative under matrix multiplication.
OCR FP1 AS 2018 March Q5
7 marks
5 The matrix \(\mathbf { A }\) is given by \(\left( \begin{array} { c c c } 1 & 0 & 0 \\ 0 & a ^ { 2 } & 0 \\ 0 & 0 & 1 \end{array} \right)\) and the matrix \(\mathbf { B }\) is given by \(\left( \begin{array} { c c c } 0.6 & b & 0 \\ - b & 0.6 & 0 \\ 0 & 0 & 1 \end{array} \right)\).
  1. \(\mathbf { A }\) represents a reflection. Write down the value of \(\operatorname { det } \mathbf { A }\).
  2. Hence find the possible values of \(a\).
  3. \(\mathbf { r }\) is the position vector of a point \(R\). Given that \(\mathbf { A r } = \mathbf { r }\) describe the location of \(R\).
  4. \(\mathbf { B }\) represents a rotation. Write down the value of \(\operatorname { det } \mathbf { B }\).
  5. Hence find the possible values of \(b\).
AQA Further AS Paper 1 2024 June Q3
1 marks Easy -1.2
3 The matrix \(\mathbf { A }\) is such that \(\operatorname { det } ( \mathbf { A } ) = 2\) Determine the value of \(\operatorname { det } \left( \mathbf { A } ^ { - 1 } \right)\) Circle your answer.
-2 \(- \frac { 1 } { 2 }\) \(\frac { 1 } { 2 }\) 2
AQA Further Paper 2 2023 June Q3
1 marks Moderate -0.5
3 The determinant \(A = \left| \begin{array} { l l l } 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 2 & 1 \end{array} \right|\) Which one of the determinants below has a value which is not equal to the value of \(A\) ?
Tick ( \(\checkmark\) ) one box.
\(\left| \begin{array} { l l l } 313
202
321 \end{array} \right|\)\(\square\)
\(\left| \begin{array} { l l l } 123
102
121 \end{array} \right|\)\(\square\)
\(\left| \begin{array} { l l l } 222
101
321 \end{array} \right|\)\(\square\)
\(\left| \begin{array} { l l l } 111
321
202 \end{array} \right|\)\(\square\)