Matrix equation solving (AB = C)

Questions where a matrix equation like AB = C or similar must be solved to find unknown matrices or parameters.

12 questions · Standard +0.0

Sort by: Default | Easiest first | Hardest first
Edexcel F1 2017 June Q2
4 marks Moderate -0.5
2. Given that $$\mathbf { A } = \left( \begin{array} { r r r } 3 & 1 & - 2 \\ - 1 & 0 & 5 \end{array} \right) \text { and } \mathbf { B } = \left( \begin{array} { r r } 2 & 4 \\ - k & 2 k \\ 3 & 0 \end{array} \right) , \text { where } k \text { is a constant }$$
  1. find the matrix \(\mathbf { A B }\),
  2. find the exact value of \(k\) for which \(\operatorname { det } ( \mathbf { A B } ) = 0\)
Edexcel F3 2016 June Q4
9 marks Standard +0.3
4. $$\mathbf { M } = \left( \begin{array} { r r r } 1 & k & 0 \\ - 1 & 1 & 1 \\ 1 & k & 3 \end{array} \right) , \text { where } k \text { is a constant }$$
  1. Find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\). Hence, given that \(k = 0\)
  2. find the matrix \(\mathbf { N }\) such that $$\mathbf { M N } = \left( \begin{array} { r r r } 3 & 5 & 6 \\ 4 & - 1 & 1 \\ 3 & 2 & - 3 \end{array} \right)$$
OCR FP1 2008 June Q10
11 marks Standard +0.8
10 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { r r r } a & 8 & 10 \\ 2 & 1 & 2 \\ 4 & 3 & 6 \end{array} \right)\). The matrix \(\mathbf { B }\) is such that \(\mathbf { A B } = \left( \begin{array} { l l l } a & 6 & 1 \\ 1 & 1 & 0 \\ 1 & 3 & 0 \end{array} \right)\).
  1. Show that \(\mathbf { A B }\) is non-singular.
  2. Find \(( \mathbf { A B } ) ^ { - 1 }\).
  3. Find \(\mathbf { B } ^ { - 1 }\).
OCR MEI FP1 2009 January Q10
12 marks Standard +0.3
10 You are given that \(\mathbf { A } = \left( \begin{array} { r r r } 3 & 4 & - 1 \\ 1 & - 1 & k \\ - 2 & 7 & - 3 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { r r c } 11 & - 5 & - 7 \\ 1 & 11 & 5 + k \\ - 5 & 29 & 7 \end{array} \right)\) and that \(\mathbf { A B }\) is of the form \(\mathbf { A B } = \left( \begin{array} { c c c } 42 & \alpha & 4 k - 8 \\ 10 - 5 k & - 16 + 29 k & - 12 + 6 k \\ 0 & 0 & \beta \end{array} \right)\).
  1. Show that \(\alpha = 0\) and \(\beta = 28 + 7 k\).
  2. Find \(\mathbf { A B }\) when \(k = 2\).
  3. For the case when \(k = 2\) write down the matrix \(\mathbf { A } ^ { - 1 }\).
  4. Use the result from part (iii) to solve the following simultaneous equations. $$\begin{aligned} 3 x + 4 y - z & = 1 \\ x - y + 2 z & = - 9 \\ - 2 x + 7 y - 3 z & = 26 \end{aligned}$$ \footnotetext{OCR
    RECOGNISING ACHIEVEMENT
OCR MEI FP1 2011 January Q9
12 marks Standard +0.3
\(\mathbf { 9 }\) You are given that \(\mathbf { A } = \left( \begin{array} { r r r } - 2 & 1 & - 5 \\ 3 & a & 1 \\ 1 & - 1 & 2 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { c c c } 2 a + 1 & 3 & 1 + 5 a \\ - 5 & 1 & - 13 \\ - 3 - a & - 1 & - 2 a - 3 \end{array} \right)\).
  1. Show that \(\mathbf { A B } = ( 8 + a ) \mathbf { I }\).
  2. State the value of \(a\) for which \(\mathbf { A } ^ { - 1 }\) does not exist. Write down \(\mathbf { A } ^ { - 1 }\) in terms of \(a\), when \(\mathbf { A } ^ { - 1 }\) exists.
  3. Use \(\mathbf { A } ^ { - 1 }\) to solve the following simultaneous equations. $$\begin{aligned} - 2 x + y - 5 z & = - 55 \\ 3 x + 4 y + z & = - 9 \\ x - y + 2 z & = 26 \end{aligned}$$
  4. What can you say about the solutions of the following simultaneous equations? $$\begin{aligned} - 2 x + y - 5 z & = p \\ 3 x - 8 y + z & = q \\ x - y + 2 z & = r \end{aligned}$$
OCR MEI FP1 2013 January Q9
12 marks Standard +0.3
9 You are given that \(\mathbf { A } = \left( \begin{array} { r r r } 8 & - 7 & - 12 \\ - 10 & 5 & 15 \\ - 9 & 6 & 6 \end{array} \right)\) and \(\mathbf { A } ^ { - 1 } = k \left( \begin{array} { r r r } 4 & 2 & 3 \\ 5 & 4 & 0 \\ 1 & - 1 & 2 \end{array} \right)\).
  1. Find the exact value of \(k\).
  2. Using your answer to part (i), solve the following simultaneous equations. $$\begin{aligned} 8 x - 7 y - 12 z & = 14 \\ - 10 x + 5 y + 15 z & = - 25 \\ - 9 x + 6 y + 6 z & = 3 \end{aligned}$$ You are also given that \(\mathbf { B } = \left( \begin{array} { r r r } - 7 & 5 & 15 \\ a & - 8 & - 21 \\ 2 & - 1 & - 3 \end{array} \right)\) and \(\mathbf { B } ^ { - 1 } = \frac { 1 } { 3 } \left( \begin{array} { r r r } 1 & 0 & 5 \\ - 4 & - 3 & 1 \\ 2 & 1 & b \end{array} \right)\).
  3. Find the values of \(a\) and \(b\).
  4. Write down an expression for \(( \mathbf { A B } ) ^ { - 1 }\) in terms of \(\mathbf { A } ^ { - 1 }\) and \(\mathbf { B } ^ { - 1 }\). Hence find \(( \mathbf { A B } ) ^ { - 1 }\).
OCR MEI FP1 2012 June Q9
12 marks Standard +0.3
9 You are given that \(\mathbf { A } = \left( \begin{array} { r r r } - 3 & - 4 & 1 \\ 2 & 1 & k \\ 7 & - 1 & - 1 \end{array} \right) , \mathbf { B } = \left( \begin{array} { r r c } - 4 & - 5 & 11 \\ - 19 & - 4 & - 7 \\ - 9 & - 31 & 2 - k \end{array} \right)\) and \(\mathbf { A B } = \left( \begin{array} { c c c } 79 & 0 & - 3 - k \\ - 9 k - 27 & - 31 k - 14 & q \\ p & 0 & 82 + k \end{array} \right)\) where \(p\) and \(q\) are to be determined.
  1. Show that \(p = 0\) and \(q = 15 + 2 k - k ^ { 2 }\). It is now given that \(k = - 3\).
  2. Find \(\mathbf { A B }\) and hence write down the inverse matrix \(\mathbf { A } ^ { - 1 }\).
  3. Use a matrix method to find the values of \(x , y\) and \(z\) that satisfy the equation \(\mathbf { A } \left( \begin{array} { l } x \\ y \\ z \end{array} \right) = \left( \begin{array} { r } 14 \\ - 23 \\ 9 \end{array} \right)\). \section*{THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE}
OCR MEI FP1 2014 June Q9
12 marks Standard +0.3
9 You are given that \(\mathbf { A } = \left( \begin{array} { r r r } 1 & 3 & - 1 \\ - 1 & \alpha & - 1 \\ - 2 & - 1 & 3 \end{array} \right) , \mathbf { B } = \left( \begin{array} { c c c } 3 \alpha - 1 & - 8 & \alpha - 3 \\ 5 & 1 & 2 \\ 2 \alpha + 1 & - 5 & \alpha + 3 \end{array} \right)\) and \(\mathbf { A B } = \left( \begin{array} { c c c } \gamma & 0 & 0 \\ \beta & \gamma & 0 \\ 0 & 0 & \gamma \end{array} \right)\).
  1. Show that \(\beta = 0\).
  2. Find \(\gamma\) in terms of \(\alpha\).
  3. Write down \(\mathbf { A } ^ { - 1 }\) for the case when \(\alpha = 2\). State the value of \(\alpha\) for which \(\mathbf { A } ^ { - 1 }\) does not exist.
  4. Use your answer to part (iii) to solve the following simultaneous equations. $$\begin{aligned} x + 3 y - z & = 25 \\ - x + 2 y - z & = 11 \\ - 2 x - y + 3 z & = - 23 \end{aligned}$$
OCR MEI FP1 2016 June Q3
6 marks Standard +0.3
3 You are given that \(\mathbf { A } = \left( \begin{array} { c c c } \lambda & 6 & - 4 \\ 2 & 5 & - 1 \\ - 1 & 4 & 3 \end{array} \right) , \mathbf { B } = \left( \begin{array} { c c c } - 19 & 34 & - 14 \\ 5 & - 5 & 5 \\ - 13 & 18 & - 3 \end{array} \right)\) and \(\mathbf { A B } = \mu \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity
matrix.
  1. Find the values of \(\lambda\) and \(\mu\).
  2. Hence find \(\mathbf { B } ^ { - 1 }\).
AQA Further AS Paper 1 2018 June Q2
1 marks Easy -1.8
2 Three matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by \(\mathbf { A } = \left[ \begin{array} { c c c } 5 & 2 & - 3 \\ 0 & 7 & 6 \\ 4 & 1 & 0 \end{array} \right]\), \(\mathbf { B } = \left[ \begin{array} { c c } 1 & 0 \\ 3 & - 5 \\ - 2 & 6 \end{array} \right]\) and \(\mathbf { C } = \left[ \begin{array} { l l l } 6 & 4 & 3 \\ 1 & 2 & 0 \end{array} \right]\) Which of the following cannot be calculated?
Circle your answer.
[0pt] [1 mark]
AB
AC
BC \(\mathrm { A } ^ { \mathbf { 2 } }\)
AQA Further AS Paper 1 2018 June Q10
8 marks Easy -1.2
10 \(\sqrt { 10 }\) \(10 - 2 \mathrm { i }\) \(10 + 2 i\) 2 Three matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by \(\mathbf { A } = \left[ \begin{array} { c c c } 5 & 2 & - 3 \\ 0 & 7 & 6 \\ 4 & 1 & 0 \end{array} \right]\), \(\mathbf { B } = \left[ \begin{array} { c c } 1 & 0 \\ 3 & - 5 \\ - 2 & 6 \end{array} \right]\) and \(\mathbf { C } = \left[ \begin{array} { l l l } 6 & 4 & 3 \\ 1 & 2 & 0 \end{array} \right]\) Which of the following cannot be calculated?
Circle your answer.
[0pt] [1 mark]
AB
AC
BC \(\mathrm { A } ^ { \mathbf { 2 } }\) 3 Which of the following functions has the fourth term \(- \frac { 1 } { 720 } x ^ { 6 }\) in its Maclaurin series expansion? Circle your answer.
[0pt] [1 mark] \(\sin x\) \(\cos x\) \(\mathrm { e } ^ { x }\) \(\ln ( 1 + x )\) 4 Sketch the graph given by the polar equation $$r = \frac { a } { \cos \theta }$$ where \(a\) is a positive constant. \includegraphics[max width=\textwidth, alt={}, center]{1d017497-11b1-4096-b83a-63314188307e-03_74_960_1018_541} 5 Describe fully the transformation given by the matrix \(\left[ \begin{array} { c c c } - \frac { 1 } { 2 } & - \frac { \sqrt { 3 } } { 2 } & 0 \\ \frac { \sqrt { 3 } } { 2 } & - \frac { 1 } { 2 } & 0 \\ 0 & 0 & 1 \end{array} \right]\) 6
  1. Matthew is finding a formula for the inverse function \(\operatorname { arsinh } x\). He writes his steps as follows: $$\begin{gathered} \text { Let } y = \sinh x \\ y = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } \right) \\ 2 y = \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } \\ 0 = \mathrm { e } ^ { x } - 2 y - \mathrm { e } ^ { - x } \\ 0 = \left( \mathrm { e } ^ { x } \right) ^ { 2 } - 2 y \mathrm { e } ^ { x } - 1 \\ 0 = \left( \mathrm { e } ^ { x } - y \right) ^ { 2 } - y ^ { 2 } - 1 \\ y ^ { 2 } + 1 = \left( \mathrm { e } ^ { x } - y \right) ^ { 2 } \\ \pm \sqrt { y ^ { 2 } + 1 } = \mathrm { e } ^ { x } - y \\ y \pm \sqrt { y ^ { 2 } + 1 } = \mathrm { e } ^ { x } \end{gathered}$$ To find the inverse function, swap \(x\) and \(y : x \pm \sqrt { x ^ { 2 } + 1 } = \mathrm { e } ^ { y }\) $$\begin{gathered} \ln \left( x \pm \sqrt { x ^ { 2 } + 1 } \right) = y \\ \operatorname { arsinh } x = \ln \left( x \pm \sqrt { x ^ { 2 } + 1 } \right) \end{gathered}$$ Identify, and explain, the error in Matthew's proof. 6
  2. Solve \(\ln \left( x + \sqrt { x ^ { 2 } + 1 } \right) = 3\) 7 Find two invariant points under the transformation given by \(\left[ \begin{array} { l l } 2 & 3 \\ 1 & 4 \end{array} \right]\) \(82 - 3 \mathrm { i }\) is one root of the equation $$z ^ { 3 } + m z + 52 = 0$$ where \(m\) is real. 8
  3. Find the other roots.
  4. Determine the value of \(m\). 9
  5. Sketch the graph of \(y ^ { 2 } = 4 x\) \includegraphics[max width=\textwidth, alt={}, center]{1d017497-11b1-4096-b83a-63314188307e-08_871_1052_413_493} 9
  6. Ben is using a 3D printer to make a plastic bowl which holds exactly \(1000 \mathrm {~cm} ^ { 3 }\) of water. Ben models the bowl as a region which is rotated through \(2 \pi\) radians about the \(x\)-axis. He uses the finite region enclosed by the lines \(x = d\) and \(y = 0\) and the curve with equation \(y ^ { 2 } = 4 x\) for \(y \geq 0\) 9
    1. Find the depth of the bowl to the nearest millimetre.
      9
  7. (ii) What assumption has Ben made about the bowl?
    10
  8. Prove by induction that, for all integers \(n \geq 1\), \(\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }\)
  9. Hence show that $$\sum _ { r = 1 } ^ { 2 n } r ( r - 1 ) ( r + 1 ) = n ( n + 1 ) ( 2 n - 1 ) ( 2 n + 1 )$$
OCR Further Pure Core 2 2021 November Q1
3 marks Standard +0.8
1 Two matrices, \(\mathbf { A }\) and \(\mathbf { B }\), are given by \(\mathbf { A } = \left( \begin{array} { r r r } 1 & - 2 & - 1 \\ 2 & - 3 & 1 \\ a & 1 & 1 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { r r r } - 6 & 3 & - 4 \\ - 1 & 6 & - 4 \\ 8 & - 8 & - 1 \end{array} \right)\) where \(a\) is a constant. Find the value of \(a\) for which \(\mathbf { A B } = \mathbf { B A }\).