CAIE FP1 2019 November — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
Topic3x3 Matrices

10 The matrix \(\mathbf { A }\) is defined by $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 5 & 1 \\ 1 & - 2 & - 2 \\ 2 & 3 & \theta \end{array} \right)$$
  1. (a) Find the rank of \(\mathbf { A }\) when \(\theta \neq - 1\).
    (b) Find the rank of \(\mathbf { A }\) when \(\theta = - 1\).
    Consider the system of equations $$\begin{aligned} x + 5 y + z & = - 1 \\ x - 2 y - 2 z & = 0 \\ 2 x + 3 y + \theta z & = \theta \end{aligned}$$
  2. Solve the system of equations when \(\theta \neq - 1\).
  3. Find the general solution when \(\theta = - 1\).
  4. Show that if \(\theta = - 1\) and \(\phi \neq - 1\) then \(\mathbf { A } \mathbf { x } = \left( \begin{array} { r } - 1 \\ 0 \\ \phi \end{array} \right)\) has no solution.

10 The matrix $\mathbf { A }$ is defined by

$$\mathbf { A } = \left( \begin{array} { r r r } 
1 & 5 & 1 \\
1 & - 2 & - 2 \\
2 & 3 & \theta
\end{array} \right)$$

(i) (a) Find the rank of $\mathbf { A }$ when $\theta \neq - 1$.\\

(b) Find the rank of $\mathbf { A }$ when $\theta = - 1$.\\

Consider the system of equations

$$\begin{aligned}
x + 5 y + z & = - 1 \\
x - 2 y - 2 z & = 0 \\
2 x + 3 y + \theta z & = \theta
\end{aligned}$$

(ii) Solve the system of equations when $\theta \neq - 1$.\\

(iii) Find the general solution when $\theta = - 1$.\\

(iv) Show that if $\theta = - 1$ and $\phi \neq - 1$ then $\mathbf { A } \mathbf { x } = \left( \begin{array} { r } - 1 \\ 0 \\ \phi \end{array} \right)$ has no solution.\\

\hfill \mbox{\textit{CAIE FP1 2019 Q10}}