Matrix inverse calculation

Questions requiring calculation of the inverse of a 3×3 matrix, either numerically or in terms of a parameter.

7 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2022 June Q6
8 marks Standard +0.8
6. $$\mathbf { A } = \left( \begin{array} { r r r } x & 1 & 3 \\ 2 & 4 & x \\ - 4 & - 2 & - 1 \end{array} \right)$$
  1. Show that \(\mathbf { A }\) is non-singular for all real values of \(x\).
  2. Determine, in terms of \(x , \mathbf { A } ^ { - 1 }\)
OCR MEI FP1 2008 June Q5
5 marks Moderate -0.5
5 You are given that \(\mathbf { A } = \left( \begin{array} { l l l } 1 & 2 & 4 \\ 3 & 2 & 5 \\ 4 & 1 & 2 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { r r r } - 1 & 0 & 2 \\ 14 & - 14 & 7 \\ - 5 & 7 & - 4 \end{array} \right)\).
  1. Calculate AB.
  2. Write down \(\mathbf { A } ^ { - 1 }\).
OCR FP1 2012 January Q9
10 marks Standard +0.3
\(\mathbf { 9 }\) The matrix \(\mathbf { X }\) is given by \(\mathbf { X } = \left( \begin{array} { r r r } a & 2 & 9 \\ 2 & a & 3 \\ 1 & 0 & - 1 \end{array} \right)\).
  1. Find the determinant of \(\mathbf { X }\) in terms of \(a\).
  2. Hence find the values of \(a\) for which \(\mathbf { X }\) is singular.
  3. Given that \(\mathbf { X }\) is non-singular, find \(\mathbf { X } ^ { - 1 }\) in terms of \(a\).
OCR FP1 2011 June Q6
7 marks Standard +0.3
6 The matrix \(\mathbf { C }\) is given by \(\mathbf { C } = \left( \begin{array} { r r r } a & 1 & 0 \\ 1 & 2 & 1 \\ - 1 & 3 & 4 \end{array} \right)\), where \(a \neq 1\). Find \(\mathbf { C } ^ { - 1 }\).
OCR Further Pure Core AS 2018 June Q4
7 marks Standard +0.3
4 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { r r r } 2 & 1 & 2 \\ 1 & - 1 & 1 \\ 2 & 2 & a \end{array} \right)\).
  1. Show that \(\operatorname { det } \mathbf { A } = 6 - 3 a\).
  2. State the value of \(a\) for which \(\mathbf { A }\) is singular.
  3. Given that \(\mathbf { A }\) is non-singular find \(\mathbf { A } ^ { - 1 }\) in terms of \(a\).
Edexcel CP1 2022 June Q5
6 marks Standard +0.3
5. $$\mathbf { M } = \left( \begin{array} { r r r } a & 2 & - 3 \\ 2 & 3 & 0 \\ 4 & a & 2 \end{array} \right) \quad \text { where } a \text { is a constant }$$
  1. Show that \(\mathbf { M }\) is non-singular for all values of \(a\).
  2. Determine, in terms of \(a , \mathbf { M } ^ { - 1 }\)
Edexcel CP2 Specimen Q3
12 marks Standard +0.3
$$\mathbf { M } = \left( \begin{array} { c c c } 2 & a & 4 \\ 1 & - 1 & - 1 \\ - 1 & 2 & - 1 \end{array} \right)$$ where \(a\) is a constant.
  1. For which values of \(a\) does the matrix \(\mathbf { M }\) have an inverse? Given that \(\mathbf { M }\) is non-singular,
  2. find \(\mathbf { M } ^ { - 1 }\) in terms of \(a\) (ii) Prove by induction that for all positive integers \(n\), $$\left( \begin{array} { l l } 3 & 0 \\ 6 & 1 \end{array} \right) ^ { n } = \left( \begin{array} { c c } 3 ^ { n } & 0 \\ 3 \left( 3 ^ { n } - 1 \right) & 1 \end{array} \right)$$