Integration by Substitution

222 questions · 19 question types identified

Sort by: Question count | Difficulty
Showing integral equals given value

A question is this type if and only if it asks to prove or show that a definite integral equals a specific value (often involving ln or exact forms) using substitution.

31 Standard +0.4
14.0% of questions
Show example »
1 Show that \(\int _ { 1 } ^ { 2 } \frac { 1 } { \sqrt { 3 x - 2 } } \mathrm {~d} x = \frac { 2 } { 3 }\).
View full question →
Easiest question Moderate -0.3 »
3. (i) Find, in simplest form, $$\int ( 2 x - 5 ) ^ { 7 } \mathrm {~d} x$$ (ii) Show, by algebraic integration, that $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \frac { 4 \sin x } { 1 + 2 \cos x } \mathrm {~d} x = \ln a$$ where \(a\) is a rational constant to be found.
View full question →
Hardest question Challenging +1.2 »
5. $$I = \int \frac { 1 } { 4 \cos x - 3 \sin x } \mathrm {~d} x \quad 0 < x < \frac { \pi } { 4 }$$ Use the substitution \(t = \tan \left( \frac { x } { 2 } \right)\) to show that $$I = \frac { 1 } { 5 } \ln \left( \frac { 2 + \tan \left( \frac { x } { 2 } \right) } { 1 - 2 \tan \left( \frac { x } { 2 } \right) } \right) + k$$ where \(k\) is an arbitrary constant.
View full question →
Definite integral with substitution

A question is this type if and only if it asks to evaluate a definite integral ∫ₐᵇ f(x)dx where substitution is needed, with no geometric interpretation or further application.

31 Standard +0.0
14.0% of questions
Show example »
2 Evaluate \(\int _ { 0 } ^ { 1 } \sqrt { } ( 3 x + 1 ) \mathrm { d } x\).
View full question →
Easiest question Moderate -0.8 »
4 Evaluate the following integrals, giving your answers in exact form.
  1. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x ^ { 2 } + 1 } \mathrm {~d} x\).
  2. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x + 1 } \mathrm {~d} x\).
View full question →
Hardest question Challenging +1.2 »
11. Evaluate the integrals
  1. \(\int _ { - 2 } ^ { 0 } \mathrm { e } ^ { 2 x } \sinh x \mathrm {~d} x\),
  2. \(\int _ { \frac { 3 } { 2 } } ^ { 3 } \frac { 5 } { ( x - 1 ) \left( x ^ { 2 } + 9 \right) } \mathrm { d } x\).
View full question →
Multiple substitutions or transformations

A question is this type if and only if it requires applying substitution to show an integral transforms to a specific form, then possibly applying further techniques like integration by parts or another substitution.

24 Challenging +1.0
10.8% of questions
Show example »
9. a. Use the substitution \(t ^ { 2 } = 2 x - 5\) to show that $$\int \frac { 1 } { x + 3 \sqrt { 2 x - 5 } } \mathrm {~d} x = \int \frac { 2 t } { t ^ { 2 } + 6 t + 5 } \mathrm {~d} t$$ b. Hence find the exact value of $$\int _ { 3 } ^ { 27 } \frac { 1 } { x + 3 \sqrt { 2 x - 5 } } \mathrm {~d} x$$
View full question →
Easiest question Standard +0.3 »
7 A curve is defined by the equation \(y = 2 x \ln ( 1 + x )\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence verify that the origin is a stationary point of the curve.
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), and use this to verify that the origin is a minimum point.
  3. Using the substitution \(u = 1 + x\), show that \(\int \frac { x ^ { 2 } } { 1 + x } \mathrm {~d} x = \int \left( u - 2 + \frac { 1 } { u } \right) \mathrm { d } u\). Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { 1 + x } \mathrm {~d} x\), giving your answer in an exact form.
  4. Using integration by parts and your answer to part (iii), evaluate \(\int _ { 0 } ^ { 1 } 2 x \ln ( 1 + x ) \mathrm { d } x\).
View full question →
Hardest question Hard +2.3 »
  1. (a) Given that f is a function such that the integrals exist,
    1. use the substitution \(u = a - x\) to show that
    $$\int _ { 0 } ^ { a } \mathrm { f } ( x ) \mathrm { d } x = \int _ { 0 } ^ { a } \mathrm { f } ( a - x ) \mathrm { d } x$$
  2. Hence use symmetry of \(\mathrm { f } ( \sin x )\) on the interval \([ 0 , \pi ]\) to show that $$\int _ { 0 } ^ { \pi } x \mathrm { f } ( \sin x ) \mathrm { d } x = \pi \int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { f } ( \sin x ) \mathrm { d } x$$ (b) Use the result of (a)(i) to show that $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \frac { \sin ^ { n } x } { \sin ^ { n } x + \cos ^ { n } x } \mathrm {~d} x$$ is independent of \(n\), and find the value of this integral.
    (c) (i) Prove that $$\frac { \cos x } { 1 + \cos x } \equiv 1 - \frac { 1 } { 2 } \sec ^ { 2 } \left( \frac { x } { 2 } \right)$$
  3. Hence use the results from (a) to find $$\int _ { 0 } ^ { \pi } \frac { x \sin x } { 1 + \sin x } \mathrm {~d} x$$ (d) Find $$\int _ { 0 } ^ { \pi } \frac { x \sin ^ { 4 } x } { \sin ^ { 4 } x + \cos ^ { 4 } x } \mathrm {~d} x$$
View full question →
Trigonometric substitution (sin, cos, tan)

A question is this type if and only if it explicitly requires using a substitution of the form x = a sin θ, x = a cos θ, x = a tan θ, or x = a sec θ to evaluate an integral.

21 Standard +0.5
9.5% of questions
Show example »
8 Use a suitable trigonometric substitution to find \(\int \frac { x ^ { 2 } } { \sqrt { 1 - x ^ { 2 } } } \mathrm {~d} x\).
View full question →
Easiest question Standard +0.2 »
4
  1. Show that the substitution \(x = \tan \theta\) transforms \(\int \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x\) to \(\int \cos ^ { 2 } \theta \mathrm {~d} \theta\).
  2. Hence find the exact value of \(\int _ { 0 } ^ { 1 } \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x\).
    \(5 A B C D\) is a parallelogram. The position vectors of \(A , B\) and \(C\) are given respectively by $$\mathbf { a } = 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k } , \quad \mathbf { b } = 3 \mathbf { i } - 2 \mathbf { j } , \quad \mathbf { c } = \mathbf { i } - \mathbf { j } - 2 \mathbf { k } .$$
  3. Find the position vector of \(D\).
  4. Determine, to the nearest degree, the angle \(A B C\).
View full question →
Hardest question Challenging +1.2 »
10.
a) Show that $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \frac { 4 \sin x } { 1 + 2 \cos x } \mathrm {~d} x = \ln a$$ where \(a\) is a rational constant to be found.
b) By using a suitable substitution, find the exact value of $$\int _ { 0 } ^ { \sqrt { 3 } } \frac { 1 } { \left( 4 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } d x$$
View full question →
Substitution with trigonometric expressions

A question is this type if and only if it requires substituting u = sin x, u = cos x, or similar trigonometric functions (not x = trig function) to evaluate an integral involving products or compositions of trig functions.

20 Standard +0.6
9.0% of questions
Show example »
5 Use the substitution \(u = \cos x\) to find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \sin ^ { 3 } x \cos ^ { 2 } x d x$$
View full question →
Easiest question Standard +0.3 »
2 Use the substitution \(u = 1 + 3 \tan x\) to find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sqrt { } ( 1 + 3 \tan x ) } { \cos ^ { 2 } x } d x$$
View full question →
Hardest question Challenging +1.8 »
2.(a)Show that $$\sin 3 x = 3 \sin x - 4 \sin ^ { 3 } x$$ Hence find
(b) \(\int \cos x ( 6 \sin x - 2 \sin 3 x ) ^ { \frac { 2 } { 3 } } \mathrm {~d} x\)
(c) \(\int ( 3 \sin 2 x - 2 \sin 3 x \cos x ) ^ { \frac { 1 } { 3 } } \mathrm {~d} x\)
View full question →
Direct substitution integration

A question is this type if and only if it requires finding an indefinite integral of the form ∫f(ax+b)ⁿ dx or similar simple linear substitutions, with no boundary conditions or further context.

17 Moderate -0.3
7.7% of questions
Show example »
1 Find \(\int \sqrt [ 3 ] { 2 x - 1 } \mathrm {~d} x\).
View full question →
Easiest question Moderate -0.8 »
  1. (i) Find
$$\int \frac { 12 } { ( 2 x - 1 ) ^ { 2 } } \mathrm {~d} x$$ giving your answer in simplest form.
(ii) (a) Write \(\frac { 4 x + 3 } { x + 2 }\) in the form $$A + \frac { B } { x + 2 } \text { where } A \text { and } B \text { are constants to be found }$$ (b) Hence find, using algebraic integration, the exact value of $$\int _ { - 8 } ^ { - 5 } \frac { 4 x + 3 } { x + 2 } d x$$ giving your answer in simplest form.
View full question →
Hardest question Challenging +1.2 »
1 Use the substitution \(t = \tan \frac { 1 } { 2 } x\) to find \(\int \frac { 1 } { 1 + \sin x + \cos x } \mathrm {~d} x\).
View full question →
Finding curve equation from derivative

A question is this type if and only if it provides dy/dx involving a function requiring substitution and asks to find the equation of the curve y=f(x) given a point on the curve.

15 Moderate -0.4
6.8% of questions
Show example »
1 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sqrt { } ( 2 x + 5 )\) and \(( 2,5 )\) is a point on the curve. Find the equation of the curve.
View full question →
Easiest question Moderate -0.8 »
3 The equation of a curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 ( 4 x - 7 ) ^ { \frac { 1 } { 2 } } - 4 x ^ { - \frac { 1 } { 2 } }\). It is given that the curve passes through the point \(\left( 4 , \frac { 5 } { 2 } \right)\). Find the equation of the curve.
View full question →
Hardest question Challenging +1.8 »
13.
  1. Using a suitable substitution, find $$\int \sqrt { 1 - x ^ { 2 } } d x$$
  2. Show that the differential equation $$\frac { d y } { d x } = 2 \sqrt { 1 - x ^ { 2 } - y ^ { 2 } + x ^ { 2 } y ^ { 2 } }$$ given that \(y = 0\) when \(x = 0 , | x | < 1\) and \(| y | < 1\), has the solution $$y = x \cos \left( x \sqrt { 1 - x ^ { 2 } } \right) + \sqrt { 1 - x ^ { 2 } } \sin \left( x \sqrt { 1 - x ^ { 2 } } \right) .$$ [BLANK PAGE]
View full question →
Substitution with u = √x or u² = x

A question is this type if and only if it requires or suggests using a substitution involving square roots, typically u = √x, u² = x, or u = √(ax+b).

10 Standard +0.4
4.5% of questions
Show example »
2. Use the substitution \(u = 1 - x ^ { \frac { 1 } { 2 } }\) to find $$\int \frac { 1 } { 1 - x ^ { \frac { 1 } { 2 } } } \mathrm {~d} x$$
View full question →
Easiest question Standard +0.3 »
3. Using the substitution \(u ^ { 2 } = 2 x - 1\), or otherwise, find the exact value of $$\int _ { 1 } ^ { 5 } \frac { 3 x } { \sqrt { ( 2 x - 1 ) } } \mathrm { d } x$$ (8)
(8)
View full question →
Hardest question Challenging +1.2 »
4. Use the substitution \(x + 2 = u ^ { 2 }\), where \(u > 0\), to show that $$\int _ { - 1 } ^ { 7 } \frac { ( x + 2 ) ^ { \frac { 1 } { 2 } } } { x + 5 } \mathrm {~d} x = a + b \pi \sqrt { 3 }$$ where \(a\) and \(b\) are rational numbers to be found. \includegraphics[max width=\textwidth, alt={}, center]{image-not-found}
"
View full question →
Algebraic manipulation before substitution

A question is this type if and only if it requires algebraic simplification, completing the square, or rewriting the integrand in a specific form before applying substitution.

9 Standard +0.3
4.1% of questions
Show example »
2 Use the substitution \(u = 3 x + 1\) to find \(\int \frac { 3 x } { 3 x + 1 } \mathrm {~d} x\).
View full question →
Easiest question Moderate -0.8 »
5. (i) Find $$\int \left( ( 3 x + 5 ) ^ { 9 } + \mathrm { e } ^ { 5 x } \right) \mathrm { d } x$$ (ii) Given that \(b\) is a constant greater than 2 , and $$\int _ { 2 } ^ { b } \frac { x } { x ^ { 2 } + 5 } \mathrm {~d} x = \ln ( \sqrt { 6 } )$$ use integration to find the value of \(b\).
View full question →
Hardest question Challenging +1.2 »
6
  1. Given that \(y = ( x - 2 ) \sqrt { 5 + 4 x - x ^ { 2 } } + 9 \sin ^ { - 1 } \left( \frac { x - 2 } { 3 } \right)\), show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = k \sqrt { 5 + 4 x - x ^ { 2 } }$$ where \(k\) is an integer.
  2. Hence show that $$\int _ { 2 } ^ { \frac { 7 } { 2 } } \sqrt { 5 + 4 x - x ^ { 2 } } \mathrm {~d} x = p \sqrt { 3 } + q \pi$$ where \(p\) and \(q\) are rational numbers.
    [0pt] [3 marks]
View full question →
Partial fractions after substitution

A question is this type if and only if it requires first applying a substitution to transform the integral, then using partial fractions to complete the integration.

8 Standard +0.5
3.6% of questions
Show example »
5
  1. Show that the substitution \(u = \sqrt { x }\) transforms \(\int \frac { 1 } { x ( 1 + \sqrt { x } ) } \mathrm { d } x\) to \(\int \frac { 2 } { u ( 1 + u ) } \mathrm { d } u\).
  2. Hence find the exact value of \(\int _ { 1 } ^ { 9 } \frac { 1 } { x ( 1 + \sqrt { x } ) } \mathrm { d } x\).
View full question →
Finding maximum/minimum on curve

A question is this type if and only if it asks to find coordinates of maximum or minimum points on a curve defined by an equation (not obtained by integration), where substitution is needed for area calculations in the same question.

7 Standard +0.5
3.2% of questions
Show example »
9
\includegraphics[max width=\textwidth, alt={}, center]{ce3c4a9c-bf83-4d28-96e2-ef31c3673dea-12_375_645_274_742} The diagram shows the curve \(y = x \mathrm { e } ^ { - \frac { 1 } { 4 } x ^ { 2 } }\), for \(x \geqslant 0\), and its maximum point \(M\).
  1. Find the exact coordinates of \(M\).
  2. Using the substitution \(x = \sqrt { u }\), or otherwise, find by integration the exact area of the shaded region bounded by the curve, the \(x\)-axis and the line \(x = 3\).
View full question →
Area under curve using substitution

A question is this type if and only if it asks to find the area of a shaded region bounded by a curve and axes/lines, requiring integration by substitution.

7 Standard +0.3
3.2% of questions
Show example »
  1. Find the exact coordinates of \(M\).
  2. Using the substitution \(u = 3 - 2 x\), find by integration the area of the shaded region bounded by the curve and the \(x\)-axis. Give your answer in the form \(a \sqrt { 13 }\), where \(a\) is a rational number. [5]
View full question →
Normal or tangent line problems

A question is this type if and only if it asks to find the equation of a tangent or normal to a curve at a given point, where the curve equation must be found by integrating using substitution.

6 Standard +0.1
2.7% of questions
Show example »
5 The equation of a curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 6 } { \sqrt { } ( 3 x - 2 ) }\). Given that the curve passes through the point \(P ( 2,11 )\), find
  1. the equation of the normal to the curve at \(P\),
  2. the equation of the curve.
View full question →
Iterative or numerical methods after integration

A question is this type if and only if it involves setting up an equation from an integral using substitution, then solving it numerically or iteratively.

4 Standard +0.7
1.8% of questions
Show example »
7 In this question you must show detailed reasoning.
Use the substitution \(u = 6 x ^ { 2 } + x\) to solve the equation \(36 x ^ { 4 } + 12 x ^ { 3 } + 7 x ^ { 2 } + x - 2 = 0\).
View full question →
Finding stationary points after integration

A question is this type if and only if it requires finding f(x) by integration using substitution, then finding and classifying stationary points or determining where f is increasing/decreasing.

4 Standard +0.0
1.8% of questions
Show example »
8 A function f is defined for \(x > \frac { 1 } { 2 }\) and is such that \(\mathrm { f } ^ { \prime } ( x ) = 3 ( 2 x - 1 ) ^ { \frac { 1 } { 2 } } - 6\).
  1. Find the set of values of \(x\) for which f is decreasing.
  2. It is now given that \(\mathrm { f } ( 1 ) = - 3\). Find \(\mathrm { f } ( x )\).
View full question →
Substitution with exponential functions

A question is this type if and only if it requires substitution involving exponential expressions like u = eˣ or u = e^(f(x)) to simplify the integral.

4 Standard +0.3
1.8% of questions
Show example »
5 By first using the substitution \(t = \sqrt { x + 1 }\), find \(\int \mathrm { e } ^ { 2 \sqrt { x + 1 } } \mathrm {~d} x\).
View full question →
Volume of revolution with substitution

A question is this type if and only if it involves rotating a region about an axis to find volume, where the integration requires substitution.

2 Standard +0.3
0.9% of questions
Show example »
  1. (a) Using the substitution \(u = 4 x + 2 \sin 2 x\), or otherwise, show that
$$\int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { 4 x + 2 \sin 2 x } \cos ^ { 2 } x \mathrm {~d} x = \frac { 1 } { 8 } \left( \mathrm { e } ^ { 2 \pi } - 1 \right)$$ Figure 3 The curve shown in Figure 3, has equation $$y = 6 \mathrm { e } ^ { 2 x + \sin 2 x } \cos x$$ The region \(R\), shown shaded in Figure 3, is bounded by the positive \(x\)-axis, the positive \(y\)-axis and the curve. The region \(R\) is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid.
(b) Use the answer to part (a) to find the volume of the solid formed, giving the answer in simplest form.
View full question →
Related rates with substitution

A question is this type if and only if it involves finding rates of change (dx/dt, dy/dt) where the curve equation is found by integration using substitution.

1 Standard +0.3
0.5% of questions
Show example »
9 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sqrt { } ( 4 x + 1 )\) and \(( 2,5 )\) is a point on the curve.
  1. Find the equation of the curve.
  2. A point \(P\) moves along the curve in such a way that the \(y\)-coordinate is increasing at a constant rate of 0.06 units per second. Find the rate of change of the \(x\)-coordinate when \(P\) passes through \(( 2,5 )\).
  3. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } \times \frac { \mathrm { d } y } { \mathrm {~d} x }\) is constant.
View full question →
Improper integrals with substitution

A question is this type if and only if it involves evaluating an integral with infinite limits (∫₁^∞ or similar) requiring substitution.

1 Challenging +1.2
0.5% of questions
Show example »
4 Using the substitution \(u = \sqrt { x }\), find the exact value of $$\int _ { 3 } ^ { \infty } \frac { 1 } { ( x + 1 ) \sqrt { x } } \mathrm {~d} x$$
View full question →