Related rates with substitution

A question is this type if and only if it involves finding rates of change (dx/dt, dy/dt) where the curve equation is found by integration using substitution.

1 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
CAIE P1 2018 June Q9
8 marks Standard +0.3
9 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sqrt { } ( 4 x + 1 )\) and \(( 2,5 )\) is a point on the curve.
  1. Find the equation of the curve.
  2. A point \(P\) moves along the curve in such a way that the \(y\)-coordinate is increasing at a constant rate of 0.06 units per second. Find the rate of change of the \(x\)-coordinate when \(P\) passes through \(( 2,5 )\).
  3. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } \times \frac { \mathrm { d } y } { \mathrm {~d} x }\) is constant.