9 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sqrt { } ( 4 x + 1 )\) and \(( 2,5 )\) is a point on the curve.
- Find the equation of the curve.
- A point \(P\) moves along the curve in such a way that the \(y\)-coordinate is increasing at a constant rate of 0.06 units per second. Find the rate of change of the \(x\)-coordinate when \(P\) passes through \(( 2,5 )\).
- Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } \times \frac { \mathrm { d } y } { \mathrm {~d} x }\) is constant.