Area under curve using substitution

A question is this type if and only if it asks to find the area of a shaded region bounded by a curve and axes/lines, requiring integration by substitution.

7 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
CAIE P1 2014 June Q9
11 marks Standard +0.3
9
\includegraphics[max width=\textwidth, alt={}, center]{1a4ddaa9-1ec2-4138-bfcb-a482fe6c942f-3_849_565_1466_790} The diagram shows part of the curve \(y = 8 - \sqrt { } ( 4 - x )\) and the tangent to the curve at \(P ( 3,7 )\).
  1. Find expressions for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\int y \mathrm {~d} x\).
  2. Find the equation of the tangent to the curve at \(P\) in the form \(y = m x + c\).
  3. Find, showing all necessary working, the area of the shaded region.
CAIE P2 2023 June Q3
5 marks Standard +0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{4ce3208e-8ceb-4848-a9c7-fcda166319f4-04_458_892_269_614} The diagram shows part of the curve \(y = \frac { 6 } { 2 x + 3 }\). The shaded region is bounded by the curve and the lines \(x = 6\) and \(y = 2\). Find the exact area of the shaded region, giving your answer in the form \(a - \ln b\), where \(a\) and \(b\) are integers.
CAIE P2 2023 June Q3
5 marks Standard +0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{a1ea242a-c7f4-46b0-b4b8-bd13b3880557-04_458_892_269_614} The diagram shows part of the curve \(y = \frac { 6 } { 2 x + 3 }\). The shaded region is bounded by the curve and the lines \(x = 6\) and \(y = 2\). Find the exact area of the shaded region, giving your answer in the form \(a - \ln b\), where \(a\) and \(b\) are integers.
CAIE P3 2022 November Q8
8 marks Standard +0.3
8
\includegraphics[max width=\textwidth, alt={}, center]{3c63c42a-2658-4984-93e8-b2a8d18eb37a-12_473_839_274_644} The diagram shows part of the curve \(y = \sin \sqrt { x }\). This part of the curve intersects the \(x\)-axis at the point where \(x = a\).
  1. State the exact value of \(a\).
  2. Using the substitution \(u = \sqrt { x }\), find the exact area of the shaded region in the first quadrant bounded by this part of the curve and the \(x\)-axis.
Edexcel P2 2023 June Q10
10 marks Standard +0.3
  1. The curve \(C\) has equation
$$y = \frac { ( x - k ) ^ { 2 } } { \sqrt { x } } \quad x > 0$$ where \(k\) is a positive constant.
  1. Show that $$\int _ { 1 } ^ { 16 } \frac { ( x - k ) ^ { 2 } } { \sqrt { x } } \mathrm {~d} x = a k ^ { 2 } + b k + \frac { 2046 } { 5 }$$ where \(a\) and \(b\) are integers to be found. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0e3b364c-151b-471d-acb6-01afb018fb75-26_645_670_904_699} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of the curve \(C\) and the line \(l\).
    Given that \(l\) intersects \(C\) at the point \(A ( 1,9 )\) and at the point \(B ( 16 , q )\) where \(q\) is a constant,
  2. show that \(k = 4\) The region \(R\), shown shaded in Figure 1, is bounded by \(C\) and \(l\)
    Using the answers to parts (a) and (b),
  3. find the area of region \(R\)
Edexcel PMT Mocks Q13
7 marks Standard +0.3
13.
\includegraphics[max width=\textwidth, alt={}, center]{63d85737-99d4-4916-a479-fe44f77b1505-25_679_1043_413_607} Figure 5 shows a sketch of part of the curve with equation \(y = \frac { 6 x } { \sqrt { 3 x + 1 } } , \quad x \geq 0\)
The finite region \(\mathbf { R }\), shown shaded in figure 5 is bounded by the curve, the \(x\)-axis and the lines \(x = 2\) and \(x = 5\). Use the substitution \(u = 3 x + 1\) to find the exact area of \(\mathbf { R }\).
(Total for Question 13 is 7 marks)
CAIE P3 2023 June Q10
10 marks Standard +0.3
  1. Find the exact coordinates of \(M\).
  2. Using the substitution \(u = 3 - 2 x\), find by integration the area of the shaded region bounded by the curve and the \(x\)-axis. Give your answer in the form \(a \sqrt { 13 }\), where \(a\) is a rational number. [5]