| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2019 |
| Session | June |
| Topic | Integration by Substitution |
5.
$$I = \int \frac { 1 } { 4 \cos x - 3 \sin x } \mathrm {~d} x \quad 0 < x < \frac { \pi } { 4 }$$
Use the substitution \(t = \tan \left( \frac { x } { 2 } \right)\) to show that
$$I = \frac { 1 } { 5 } \ln \left( \frac { 2 + \tan \left( \frac { x } { 2 } \right) } { 1 - 2 \tan \left( \frac { x } { 2 } \right) } \right) + k$$
where \(k\) is an arbitrary constant.