Edexcel FP1 2019 June — Question 5

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
TopicIntegration by Substitution

5. $$I = \int \frac { 1 } { 4 \cos x - 3 \sin x } \mathrm {~d} x \quad 0 < x < \frac { \pi } { 4 }$$ Use the substitution \(t = \tan \left( \frac { x } { 2 } \right)\) to show that $$I = \frac { 1 } { 5 } \ln \left( \frac { 2 + \tan \left( \frac { x } { 2 } \right) } { 1 - 2 \tan \left( \frac { x } { 2 } \right) } \right) + k$$ where \(k\) is an arbitrary constant.