SPS SPS FM Pure 2025 June — Question 13

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2025
SessionJune
TopicIntegration by Substitution

13.
  1. Using a suitable substitution, find $$\int \sqrt { 1 - x ^ { 2 } } d x$$
  2. Show that the differential equation $$\frac { d y } { d x } = 2 \sqrt { 1 - x ^ { 2 } - y ^ { 2 } + x ^ { 2 } y ^ { 2 } }$$ given that \(y = 0\) when \(x = 0 , | x | < 1\) and \(| y | < 1\), has the solution $$y = x \cos \left( x \sqrt { 1 - x ^ { 2 } } \right) + \sqrt { 1 - x ^ { 2 } } \sin \left( x \sqrt { 1 - x ^ { 2 } } \right) .$$ [BLANK PAGE]