Substitution with trigonometric expressions

A question is this type if and only if it requires substituting u = sin x, u = cos x, or similar trigonometric functions (not x = trig function) to evaluate an integral involving products or compositions of trig functions.

20 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
CAIE P3 2014 June Q2
5 marks Standard +0.3
2 Use the substitution \(u = 1 + 3 \tan x\) to find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sqrt { } ( 1 + 3 \tan x ) } { \cos ^ { 2 } x } d x$$
CAIE P3 2014 June Q9
11 marks Standard +0.3
9
\includegraphics[max width=\textwidth, alt={}, center]{b2136f5d-0d66-4524-bb76-fcc4cb59150c-3_639_387_1749_879} The diagram shows the curve \(y = \mathrm { e } ^ { 2 \sin x } \cos x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), and its maximum point \(M\).
  1. Using the substitution \(u = \sin x\), find the exact value of the area of the shaded region bounded by the curve and the axes.
  2. Find the \(x\)-coordinate of \(M\), giving your answer correct to 3 decimal places.
CAIE P3 2017 June Q10
12 marks Standard +0.3
10
\includegraphics[max width=\textwidth, alt={}, center]{b00cefad-7c3c-4672-b309-f19aafab8b01-18_324_677_259_734} The diagram shows the curve \(y = \sin x \cos ^ { 2 } 2 x\) for \(0 \leqslant x \leqslant \frac { 1 } { 4 } \pi\) and its maximum point \(M\).
  1. Using the substitution \(u = \cos x\), find by integration the exact area of the shaded region bounded by the curve and the \(x\)-axis.
  2. Find the \(x\)-coordinate of \(M\). Give your answer correct to 2 decimal places.
CAIE P3 2019 March Q10
12 marks Standard +0.3
10
\includegraphics[max width=\textwidth, alt={}, center]{dcfbe7af-c212-42b1-8a90-8e0418cf0ffd-16_330_689_264_726} The diagram shows the curve \(y = \sin ^ { 3 } x \sqrt { } ( \cos x )\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), and its maximum point \(M\).
  1. Using the substitution \(u = \cos x\), find by integration the exact area of the shaded region bounded by the curve and the \(x\)-axis.
  2. Showing all your working, find the \(x\)-coordinate of \(M\), giving your answer correct to 3 decimal places.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2012 November Q7
8 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{adbef77f-e2ac-40ce-a56b-cf6776534ec1-3_543_1091_1402_529} The diagram shows part of the curve \(y = \sin ^ { 3 } 2 x \cos ^ { 3 } 2 x\). The shaded region shown is bounded by the curve and the \(x\)-axis and its exact area is denoted by \(A\).
  1. Use the substitution \(u = \sin 2 x\) in a suitable integral to find the value of \(A\).
  2. Given that \(\int _ { 0 } ^ { k \pi } \left| \sin ^ { 3 } 2 x \cos ^ { 3 } 2 x \right| \mathrm { d } x = 40 A\), find the value of the constant \(k\).
CAIE P3 2015 November Q5
8 marks Standard +0.8
5 Use the substitution \(u = 4 - 3 \cos x\) to find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { 9 \sin 2 x } { \sqrt { ( 4 - 3 \cos x ) } } \mathrm { d } x\).
CAIE P3 2018 November Q7
9 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{c861e691-66da-4269-9057-4a343be9835e-12_357_565_260_790} The diagram shows the curve \(y = 5 \sin ^ { 2 } x \cos ^ { 3 } x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), and its maximum point \(M\). The shaded region \(R\) is bounded by the curve and the \(x\)-axis.
  1. Find the \(x\)-coordinate of \(M\), giving your answer correct to 3 decimal places.
  2. Using the substitution \(u = \sin x\) and showing all necessary working, find the exact area of \(R\). [4]
CAIE P3 2018 November Q7
10 marks Standard +0.3
7 A curve has equation \(y = \frac { 3 \cos x } { 2 + \sin x }\), for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  1. Find the exact coordinates of the stationary point of the curve.
  2. The constant \(a\) is such that \(\int _ { 0 } ^ { a } \frac { 3 \cos x } { 2 + \sin x } \mathrm {~d} x = 1\). Find the value of \(a\), giving your answer correct to 3 significant figures.
    \(8 \quad\) Let \(\mathrm { f } ( x ) = \frac { 7 x ^ { 2 } - 15 x + 8 } { ( 1 - 2 x ) ( 2 - x ) ^ { 2 } }\).
CAIE P3 2018 November Q7
9 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{2a3df76c-2323-470c-8586-009753a4c1e3-12_357_565_260_790} The diagram shows the curve \(y = 5 \sin ^ { 2 } x \cos ^ { 3 } x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), and its maximum point \(M\). The shaded region \(R\) is bounded by the curve and the \(x\)-axis.
  1. Find the \(x\)-coordinate of \(M\), giving your answer correct to 3 decimal places.
  2. Using the substitution \(u = \sin x\) and showing all necessary working, find the exact area of \(R\). [4]
CAIE P3 2019 November Q10
12 marks Challenging +1.2
10
\includegraphics[max width=\textwidth, alt={}, center]{5b5ed7d1-028e-4f9a-ae9e-26071d0df678-18_449_787_262_678} The diagram shows the graph of \(y = \mathrm { e } ^ { \cos x } \sin ^ { 3 } x\) for \(0 \leqslant x \leqslant \pi\), and its maximum point \(M\). The shaded region \(R\) is bounded by the curve and the \(x\)-axis.
  1. Find the \(x\)-coordinate of \(M\). Show all necessary working and give your answer correct to 2 decimal places.
  2. By first using the substitution \(u = \cos x\), find the exact value of the area of \(R\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2024 June Q8
7 marks Standard +0.8
8 Use the substitution \(\mathrm { u } = 1 - \sin \mathrm { x }\) to find the exact value of $$\int _ { \pi } ^ { \frac { 3 } { 2 } \pi } \frac { \sin 2 x } { \sqrt { 1 - \sin x } } d x$$ Give your answer in the form \(\mathrm { a } + \mathrm { b } \sqrt { 2 }\) where \(a\) and \(b\) are rational numbers to be determined.
CAIE P3 2021 March Q10
11 marks Standard +0.3
10
\includegraphics[max width=\textwidth, alt={}, center]{149a8d28-8d2a-4b01-bed0-f16f1e201f32-18_372_675_264_735} The diagram shows the curve \(y = \sin 2 x \cos ^ { 2 } x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), and its maximum point \(M\).
  1. Using the substitution \(u = \sin x\), find the exact area of the region bounded by the curve and the \(x\)-axis.
  2. Find the exact \(x\)-coordinate of \(M\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2022 March Q11
11 marks Standard +0.8
11
\includegraphics[max width=\textwidth, alt={}, center]{7cdf4db7-7217-4ef1-becf-359a70cfeb62-16_556_698_274_712} The diagram shows the curve \(y = \sin x \cos 2 x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), and its maximum point \(M\).
  1. Find the \(x\)-coordinate of \(M\), giving your answer correct to 3 significant figures.
  2. Using the substitution \(u = \cos x\), find the area of the shaded region enclosed by the curve and the \(x\)-axis in the first quadrant, giving your answer in a simplified exact form.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2024 November Q11
11 marks Standard +0.8
11
\includegraphics[max width=\textwidth, alt={}, center]{6280ab81-0bdb-47b4-8651-bff1261a0adf-18_565_634_260_717} The diagram shows the curve \(y = 2 \sin x \sqrt { 2 + \cos x }\), for \(0 \leqslant x \leqslant 2 \pi\), and its minimum point \(M\), where \(x = a\).
  1. Find the value of \(a\) correct to 2 decimal places.
    \includegraphics[max width=\textwidth, alt={}, center]{6280ab81-0bdb-47b4-8651-bff1261a0adf-18_2716_38_109_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{6280ab81-0bdb-47b4-8651-bff1261a0adf-19_2726_33_97_22}
  2. Use the substitution \(u = 2 + \cos x\) to find the exact area of the shaded region \(R\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
Edexcel P4 2021 October Q6
7 marks Challenging +1.2
6. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{08756c4b-6619-42da-ac8a-2bf065c01de8-18_650_938_413_504} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve with equation $$y = \frac { 16 \sin 2 x } { ( 3 + 4 \sin x ) ^ { 2 } } \quad 0 \leqslant x \leqslant \frac { \pi } { 2 }$$ The region \(R\), shown shaded in Figure 2, is bounded by the curve, the \(x\)-axis and the line with equation \(x = \frac { \pi } { 6 }\) Using the substitution \(u = 3 + 4 \sin x\), show that the area of \(R\) can be written in the form \(a + \ln b\), where \(a\) and \(b\) are rational constants to be found.
Edexcel AEA 2012 June Q2
10 marks Challenging +1.8
2.(a)Show that $$\sin 3 x = 3 \sin x - 4 \sin ^ { 3 } x$$ Hence find
(b) \(\int \cos x ( 6 \sin x - 2 \sin 3 x ) ^ { \frac { 2 } { 3 } } \mathrm {~d} x\)
(c) \(\int ( 3 \sin 2 x - 2 \sin 3 x \cos x ) ^ { \frac { 1 } { 3 } } \mathrm {~d} x\)
CAIE P3 2020 Specimen Q9
10 marks Standard +0.3
9
\includegraphics[max width=\textwidth, alt={}, center]{258f9a6f-9339-49c3-8118-6ae9e934f1bb-16_321_602_260_735} Th d ag am sto \(\mathrm { su } y = \sin ^ { 2 } 2 x \mathrm { co } x\) fo \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), ad ts max mm \(\dot { \mathrm { p } }\) n \(M\).
  1. Fid b \(x\)-co dia te \(6 M\).
    [0pt] [С
  2. Usig th stb tittu in \(u = \sin x\), find th area 6 th sh d d regn \(\mathbf { d } \quad \mathrm { d }\) y th cn e ad th \(x\)-ax s.
OCR C4 2012 January Q5
6 marks Standard +0.3
5 Use the substitution \(u = \cos x\) to find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \sin ^ { 3 } x \cos ^ { 2 } x d x$$
AQA C3 2013 January Q8
12 marks Challenging +1.2
8
  1. Show that $$\int _ { 0 } ^ { \ln 2 } \mathrm { e } ^ { 1 - 2 x } \mathrm {~d} x = \frac { 3 } { 8 } \mathrm { e }$$
  2. Use the substitution \(u = \tan x\) to find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \sec ^ { 4 } x \sqrt { \tan x } d x$$ (8 marks)
AQA C3 2008 June Q7
10 marks Standard +0.3
7
  1. Given that \(y = \frac { \sin \theta } { \cos \theta }\), use the quotient rule to show that \(\frac { \mathrm { d } y } { \mathrm {~d} \theta } = \sec ^ { 2 } \theta\).
  2. Given that \(x = \sin \theta\), show that \(\frac { x } { \sqrt { 1 - x ^ { 2 } } } = \tan \theta\).
  3. Use the substitution \(x = \sin \theta\) to find \(\int \frac { 1 } { \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x\), giving your answer in terms of \(x\).