Questions (30179 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA Further AS Paper 2 Statistics 2024 June Q3
3 marks Moderate -0.8
3 The random variable \(X\) has a normal distribution with known variance 15.7 A random sample of size 120 is taken from \(X\) The sample mean is 68.2 Find a 94\% confidence interval for the population mean of \(X\) Give your limits to three significant figures.
AQA Further AS Paper 2 Statistics 2024 June Q4
7 marks Easy -1.2
4 The discrete random variable \(Y\) has probability distribution
\(y\)15213643
\(\mathrm { P } ( Y = y )\)0.160.320.290.23
The standard deviation of \(Y\) is \(s\) 4
  1. Show that \(s = 10.53\) correct to two decimal places.
    [0pt] [4 marks]
    4
  2. The median of \(Y\) is \(m\) Find \(\mathrm { P } ( Y > m - 1.5 s )\)
AQA Further AS Paper 2 Statistics 2024 June Q5
6 marks Easy -1.8
5 A spinner has 8 equal areas numbered 1 to 8, as shown in the diagram below. \includegraphics[max width=\textwidth, alt={}, center]{de9f0107-38de-4d0d-8391-4d29b98fa601-06_383_390_319_810} The spinner is spun and lands with one of its edges on the ground. 5
  1. Assume that the spinner lands on each number with equal probability. 5
    1. State a distribution that could be used to model the number that the spinner lands on. 5
  2. (ii) Use your distribution from part 5
    1. to find the probability that the spinner lands on a number greater than 5
      [0pt] [1 mark] 5
  3. Clare spins the spinner 1000 times and records the results in the following table.
    Number
    landed on
    12345678
    Frequency376411216130815610953
    5
    1. Explain how the data shows that the model used in part (a) may not be valid.
      5
  4. (ii) Describe how Clare's results could be used to adjust the model.
AQA Further AS Paper 2 Statistics 2024 June Q6
11 marks Challenging +1.2
6 The continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} \frac { 3 x } { 44 } + \frac { 1 } { 22 } & 1 \leq x \leq 5 \\ 0 & \text { otherwise } \end{cases}$$ 6
  1. Find \(\mathrm { P } ( X > 2 )\) [0pt] [2 marks]
    6
  2. Find the upper quartile of \(X\) Give your answer to two decimal places.
    6
  3. Find \(\operatorname { Var } \left( 44 X ^ { - 3 } \right)\) Give your answer to three decimal places.
AQA Further AS Paper 2 Statistics 2024 June Q7
11 marks Standard +0.3
7 Over a period of time, it has been shown that the mean number of customers entering a small store is 6 per hour. The store runs a promotion, selling many products at lower prices. 7
  1. Luke randomly selects an hour during the promotion and counts 11 customers entering the store. He claims that the promotion has changed the mean number of customers per hour entering the store. Investigate Luke's claim, using the \(5 \%\) level of significance.
    7
  2. Luke randomly selects another hour and carries out the same investigation as in part (a). Find the probability of a Type I error, giving your answer to four decimal places.
    Fully justify your answer.
    7
  3. When observing the store, Luke notices that some customers enter the store together as a group. Explain why the model used in parts (a) and (b) might not be valid.
    DO NOT WRITE/ON THIS PAGE ANSWER IN THE/SPACES PROVIDED number Additional page, if required. Write the question numbers in the left-hand margin.
    Additional page, if required. number Additional page, if required.
    Write the question numbers in the left-hand margin. Additional page, if required. number Additional page, if required.
    Write the question numbers in the left-hand margin.
    Write the question n
AQA Further AS Paper 2 Mechanics 2018 June Q1
1 marks Easy -1.8
1 A particle \(A\), of mass 0.2 kg , collides with a particle \(B\), of mass 0.3 kg Immediately before the collision, the velocity of \(A\) is \(\left[ \begin{array} { c } 4 \\ 12 \end{array} \right] \mathrm { ms } ^ { - 1 }\) and the velocity of \(B\) is \(\left[ \begin{array} { l } - 1 \\ - 3 \end{array} \right] \mathrm { m } \mathrm { s } ^ { - 1 }\) As a result of the collision the particles coalesce to become a single particle.
Find the velocity of the single particle.
Circle your answer.
[0pt] [1 mark] $$\left[ \begin{array} { l } 0.5 \\ 1.5 \end{array} \right] \mathrm { m } \mathrm {~s} ^ { - 1 } \quad \left[ \begin{array} { l } 2 \\ 6 \end{array} \right] \mathrm { m } \mathrm {~s} ^ { - 1 } \quad \left[ \begin{array} { l } 1 \\ 3 \end{array} \right] \mathrm { ms } ^ { - 1 } \quad \left[ \begin{array} { l } 3 \\ 9 \end{array} \right] \mathrm { m } \mathrm {~s} ^ { - 1 }$$
AQA Further AS Paper 2 Mechanics 2018 June Q2
1 marks Easy -1.2
2 A train is travelling at maximum speed with its engine using its maximum power of 1800 kW When travelling at this speed the train experiences a total resistive force of 40000 N Find the maximum speed of the train. Circle your answer.
[0pt] [1 mark] \(22 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) \(45 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) \(54 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) \(90 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
AQA Further AS Paper 2 Mechanics 2018 June Q3
5 marks Standard +0.3
3 The kinetic energy, \(E\), of a compound pendulum is given by $$E = \frac { 1 } { 2 } I \omega ^ { 2 }$$ where \(\omega\) is the angular speed and \(I\) is a quantity called the moment of inertia.
3
  1. Show that for this formula to be dimensionally consistent then \(I\) must have dimensions \(M L ^ { 2 }\), where \(M\) represents mass and \(L\) represents length.
    [0pt] [2 marks]
    3
  2. The time, \(T\), taken for one complete swing of a pendulum is thought to depend on its moment of inertia, \(I\), its weight, \(W\), and the distance, \(h\), of the centre of mass of the pendulum from the point of suspension. The formula being proposed is $$T = k I ^ { \alpha } W ^ { \beta } h ^ { \gamma }$$ where \(k\) is a dimensionless constant. Determine the values of \(\alpha , \beta\) and \(\gamma\).
AQA Further AS Paper 2 Mechanics 2018 June Q4
11 marks Standard +0.8
4 Two smooth spheres \(A\) and \(B\) of equal radius are free to move on a smooth horizontal surface. The masses of \(A\) and \(B\) are \(m\) and \(4 m\) respectively.
The coefficient of restitution between the spheres is \(e\).
The spheres are projected directly towards each other, each with speed \(u\), and subsequently collide. 4
  1. Show that the speed of \(B\) immediately after the impact with \(A\) is $$\frac { u ( 3 - 2 e ) } { 5 }$$ 4
  2. Find the speed of \(A\) in terms of \(u\) and \(e\).
    4
  3. Comment on the direction of motion of the spheres after the collision, justifying your answer.
    4
  4. The magnitude of the impulse on \(B\) due to the collision is \(I\).
    Deduce that $$\frac { 8 m u } { 5 } \leq I \leq \frac { 16 m u } { 5 }$$
AQA Further AS Paper 2 Mechanics 2018 June Q5
6 marks Standard +0.3
5 A car travels around a roundabout at a constant speed. The surface of the roundabout is horizontal. The car has mass 990 kg and the path of the car is a circular arc of radius 48 metres.
A simple model assumes that the car is a particle and the only horizontal force acting on it as it travels around the roundabout is friction. On a dry day typical values of friction, \(F\), between the surface of the roundabout and the tyres of the car are $$7300 \mathrm {~N} \leq F \leq 9200 \mathrm {~N}$$ 5
  1. Using this model calculate a safe speed limit, in miles per hour, for the car as it travels around the roundabout. Explain your reasoning fully.
    Note that there are 1600 metres in one mile.
    5
  2. Gary assumes that on a wet day typical values for friction, \(F\), are $$5400 \mathrm {~N} \leq F \leq 10000 \mathrm {~N}$$ Comment on the validity of Gary's revised assumption.
AQA Further AS Paper 2 Mechanics 2018 June Q6
7 marks Standard +0.3
6 At a fairground a dodgem car is moving in a straight horizontal line towards a side wall that is perpendicular to the velocity of the car. The speed of the car is \(1.8 \mathrm {~ms} ^ { - 1 }\) It collides with the side wall and rebounds along its original path with a speed of \(1.2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) The total mass of the dodgem car and the passengers is 250 kg
6
  1. Find the magnitude of the impulse on the car during the collision with the side wall.
    6
  2. A possible model for the magnitude of the force, \(F\) newtons, acting on the dodgem car due to its collision with the side wall is given by $$F = k t ( 4 - 5 t ) \quad \text { for } 0 \leq t \leq 0.8$$ 6
    1. Find the value of \(k\).
  3. (ii) Determine the maximum magnitude of the force predicted by the model. 6
  4. (ii) Determine the maximum magnitude of the fored bed bed at
AQA Further AS Paper 2 Mechanics 2018 June Q7
9 marks Standard +0.3
7
  1. Find Dominic's speed at the point when the cord initially becomes taut.
    7
  2. Determine whether or not Dominic enters the river and gets wet.
    7
  3. One limitation of this model is that Dominic is not a particle.
    Explain the effect of revising this assumption on your answer to part (b). \includegraphics[max width=\textwidth, alt={}, center]{1b79a789-c003-46c9-9235-254c1d8a0501-12_2492_1721_217_150} Question number Additional page, if required.
    Write the question numbers in the left-hand margin. Question number Additional page, if required.
    Write the question numbers in the left-hand margin. Additional page, if required.
    Write the question numbers in the left-hand margin.
AQA Further AS Paper 2 Mechanics 2019 June Q1
1 marks Easy -1.8
1 A turntable rotates at a constant speed of \(33 \frac { 1 } { 3 }\) revolutions per minute.
Find the angular speed in radians per second.
Circle your answer. \(\frac { 5 \pi } { 9 }\) \(\frac { 10 \pi } { 9 }\) \(\frac { 5 \pi } { 3 }\) \(\frac { 20 \pi } { 9 }\)
AQA Further AS Paper 2 Mechanics 2019 June Q2
1 marks Moderate -0.5
2 The graph shows the resistance force experienced by a cyclist over the first 20 metres of a bicycle ride. \includegraphics[max width=\textwidth, alt={}, center]{86bfb16f-4df3-4105-8343-e8c4ae862f27-02_572_1381_1320_328} Find the work done by the resistance force over the 20 metres of the bicycle ride. Circle your answer.
[0pt] [1 mark]
1600 J
3000 J
3200 J
4000 J A formula for the elastic potential energy, \(E\), stored in a stretched spring is given by $$E = \frac { k x ^ { 2 } } { 2 }$$ where \(x\) is the extension of the spring and \(k\) is a constant.
Use dimensional analysis to find the dimensions of \(k\).
AQA Further AS Paper 2 Mechanics 2019 June Q4
7 marks Easy -1.2
4
  1. Explain, with the aid of a force diagram, why the magnitude of the frictional force acting on Stephi is 490 newtons. 4 In this question use \(g = 9.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\)
AQA Further AS Paper 2 Mechanics 2019 June Q5
7 marks Standard +0.8
5 A car of mass 1000 kg has a maximum speed of \(40 \mathrm {~ms} ^ { - 1 }\) when travelling on a straight horizontal race track. The maximum power output of the car's engine is 48 kW
The total resistance force experienced by the car can be modelled as being proportional to the car's speed. Find the maximum possible acceleration of the car when it is travelling at \(25 \mathrm {~ms} ^ { - 1 }\) on the straight horizontal race track. Fully justify your answer.
AQA Further AS Paper 2 Mechanics 2019 June Q6
9 marks Standard +0.3
6 In this question use \(g = 9.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) Martin, who is of mass 40 kg , is using a slide.
The slide is made of two straight sections \(A B\) and \(B C\).
The section \(A B\) has length 15 metres and is at an angle of \(50 ^ { \circ }\) to the horizontal.
The section \(B C\) has length 2 metres and is horizontal. \includegraphics[max width=\textwidth, alt={}, center]{86bfb16f-4df3-4105-8343-e8c4ae862f27-08_389_702_630_667} Martin pushes himself from \(A\) down the slide with initial speed \(1 \mathrm {~ms} ^ { - 1 }\) He reaches \(B\) with speed \(5 \mathrm {~ms} ^ { - 1 }\) Model Martin as a particle.
6
  1. Find the energy lost as Martin slides from \(A\) to \(B\).
    6
  2. Assume that a resistance force of constant magnitude acts on Martin while he is moving on the slide. 6
    1. Show that the magnitude of this resistance force is approximately 270 N
      6
  3. (ii) Determine if Martin reaches the point \(C\).
AQA Further AS Paper 2 Mechanics 2019 June Q7
12 marks Standard +0.3
7 Two smooth spheres, \(P\) and \(Q\), of equal radius are free to move on a smooth horizontal surface. The masses of \(P\) and \(Q\) are \(3 m\) and \(m\) respectively. \(P\) is set in motion with speed \(u\) directly towards \(Q\), which is initially at rest. \(P\) subsequently collides with \(Q\). \includegraphics[max width=\textwidth, alt={}, center]{86bfb16f-4df3-4105-8343-e8c4ae862f27-10_273_864_685_589} Immediately after the collision, \(P\) moves with speed \(v\) and \(Q\) moves with speed \(w\).
The coefficient of restitution between the spheres is \(e\).
7
    1. Show that $$v = \frac { u ( 3 - e ) } { 4 }$$ 7
  1. (ii) Find \(w\), in terms of \(e\) and \(u\), simplifying your answer.
    7
  2. Deduce that $$\frac { u } { 2 } \leq v \leq \frac { 3 u } { 4 }$$ 7
    1. Find, in terms of \(m\) and \(u\), the maximum magnitude of the impulse that \(P\) exerts on \(Q\).
      7
  3. (ii) Describe the impulse that \(Q\) exerts on \(P\). \includegraphics[max width=\textwidth, alt={}, center]{86bfb16f-4df3-4105-8343-e8c4ae862f27-13_2488_1719_219_150} Question number Additional page, if required.
    Write the question numbers in the left-hand margin. Additional page, if required.
    Write the question numbers in the left-hand margin.
AQA Further AS Paper 2 Mechanics 2022 June Q1
1 marks Easy -1.8
1 A box is being pushed in a straight line along horizontal ground by a force.
The force is applied in the direction of motion and has magnitude 10 newtons. The box moves 5 metres in 2 seconds. Calculate the work done by the force.
Circle your answer.
20 J
25 J
50 J
100 J
AQA Further AS Paper 2 Mechanics 2022 June Q2
1 marks Easy -1.8
2 Two particles of equal mass are moving on a horizontal surface when they collide.
Immediately before the collision, their velocities are \(\left[ \begin{array} { l } 2 \\ 4 \end{array} \right] \mathrm { ms } ^ { - 1 }\) and \(\left[ \begin{array} { c } 6 \\ - 2 \end{array} \right] \mathrm { ms } ^ { - 1 }\) As a result of the collision the particles coalesce to become a single particle.
Find the velocity of the single particle, immediately after the collision.
Circle your answer.
[0pt] [1 mark] \(\left[ \begin{array} { l } 4 \\ 1 \end{array} \right] \mathrm { m } \mathrm { s } ^ { - 1 }\) \(\left[ \begin{array} { l } 4 \\ 3 \end{array} \right] \mathrm { m } \mathrm { s } ^ { - 1 }\) \(\left[ \begin{array} { l } 8 \\ 2 \end{array} \right] \mathrm { ms } ^ { - 1 }\) \(\left[ \begin{array} { l } 8 \\ 6 \end{array} \right] \mathrm { ms } ^ { - 1 }\)
AQA Further AS Paper 2 Mechanics 2022 June Q3
4 marks Moderate -0.3
3 In this question use \(g = 9.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) A ball of mass of 0.75 kg is thrown vertically upwards with an initial speed of \(12 \mathrm {~ms} ^ { - 1 }\) The ball is thrown from ground level. 3
  1. Calculate the initial kinetic energy of the ball. 3
  2. The maximum height of the ball above the ground is \(h\) metres.
    Jeff and Gurjas use an energy method to find \(h\) Jeff concludes that \(h = 7.3\) Gurjas concludes that \(h < 7.3\) Explain the reasoning that they have used, showing any calculations that you make.
AQA Further AS Paper 2 Mechanics 2022 June Q4
5 marks Moderate -0.8
4 Wavelength is defined as the distance from the highest point on one wave to the highest point on the next wave. Surfers classify waves into one of several types related to their wavelengths.
Two of these classifications are deep water waves and shallow water waves.
4
  1. The wavelength \(w\) of a deep water wave is given by $$w = \frac { g t ^ { 2 } } { k }$$ where \(g\) is the acceleration due to gravity and \(t\) is the time period between consecutive waves. Given that the formula for a deep water wave is dimensionally consistent, show that \(k\) is a dimensionless constant. 4
  2. The wavelength \(w\) of a shallow water wave is given by $$w = ( g d ) ^ { \alpha } t ^ { \beta }$$ where \(g\) is the acceleration due to gravity, \(d\) is the depth of water and \(t\) is the time period between consecutive waves. Use dimensional analysis to find the values of \(\alpha\) and \(\beta\)
AQA Further AS Paper 2 Mechanics 2022 June Q5
5 marks Moderate -0.3
5 A car, of mass 1000 kg , is travelling on a straight horizontal road. When the car travels at a speed of \(v \mathrm {~ms} ^ { - 1 }\), it experiences a resistance force of magnitude \(25 v\) newtons. The car has a maximum speed of \(72 \mathrm {~km} \mathrm {~h} ^ { - 1 }\) on the straight road.
Find the maximum power output of the car.
Fully justify your answer.
AQA Further AS Paper 2 Mechanics 2022 June Q6
7 marks Standard +0.3
6 An ice hockey puck, of mass 0.2 kg , is moving in a straight line on a horizontal ice rink under the action of a single force which acts in the direction of motion. At time \(t\) seconds, the force has magnitude ( \(2 t + 3\) ) newtons.
The force acts on the puck from \(t = 0\) to \(t = T\) 6
  1. Show that the magnitude of the impulse of the force is \(a T ^ { 2 } + b T\), where \(a\) and \(b\) are integers to be found.
    [0pt] [3 marks]
    6
  2. While the force acts on the puck, its speed increases from \(1 \mathrm {~ms} ^ { - 1 }\) to \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) Use your answer from part (a) to find \(T\), giving your answer to three significant figures.
    Fully justify your answer.
AQA Further AS Paper 2 Mechanics 2022 June Q7
9 marks Standard +0.3
7 The particles \(A\) and \(B\) are moving on a smooth horizontal surface directly towards each other. Particle \(A\) has mass 0.4 kg and particle \(B\) has mass 0.2 kg
Particle \(A\) has speed \(4 \mathrm {~ms} ^ { - 1 }\) and particle \(B\) has speed \(2 \mathrm {~ms} ^ { - 1 }\) when they collide, as shown in the diagram below. \includegraphics[max width=\textwidth, alt={}, center]{ec39a757-5867-4798-b26c-73cd5746581c-08_392_1064_625_488} The coefficient of restitution between the particles is \(e\) 7
  1. Find the magnitude of the total momentum of the particles before the collision.
    [0pt] [2 marks] 7
    1. Show that the speed of \(B\) immediately after the collision is \(( 4 e + 2 ) \mathrm { ms } ^ { - 1 }\) [0pt] [3 marks]
      7
  2. (ii) Find an expression, in terms of \(e\), for the speed of \(A\) immediately after the collision.
    7
  3. Explain what happens to particle \(A\) when the collision is perfectly elastic.