Questions — OCR MEI (4333 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C1 2013 January Q8
4 marks Easy -1.8
8 Rearrange the equation \(5 c + 9 t = a ( 2 c + t )\) to make \(c\) the subject.
OCR MEI C1 2013 January Q9
5 marks Moderate -0.8
9 You are given that \(\mathrm { f } ( x ) = ( x + 2 ) ^ { 2 } ( x - 3 )\).
  1. Sketch the graph of \(y = \mathrm { f } ( x )\).
  2. State the values of \(x\) which satisfy \(\mathrm { f } ( x + 3 ) = 0\).
OCR MEI C1 2013 January Q10
14 marks Standard +0.3
10
  1. Points A and B have coordinates \(( - 2,1 )\) and \(( 3,4 )\) respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as \(5 x + 3 y = 10\).
  2. Points C and D have coordinates \(( - 5,4 )\) and \(( 3,6 )\) respectively. The line through C and D has equation \(4 y = x + 21\). The point E is the intersection of CD and the perpendicular bisector of AB . Find the coordinates of point E .
  3. Find the equation of the circle with centre E which passes through A and B . Show also that CD is a diameter of this circle.
OCR MEI C1 2013 January Q11
12 marks Moderate -0.3
11
  1. Express \(x ^ { 2 } - 5 x + 6\) in the form \(( x - a ) ^ { 2 } - b\). Hence state the coordinates of the turning point of the curve \(y = x ^ { 2 } - 5 x + 6\).
  2. Find the coordinates of the intersections of the curve \(y = x ^ { 2 } - 5 x + 6\) with the axes and sketch this curve.
  3. Solve the simultaneous equations \(y = x ^ { 2 } - 5 x + 6\) and \(x + y = 2\). Hence show that the line \(x + y = 2\) is a tangent to the curve \(y = x ^ { 2 } - 5 x + 6\) at one of the points where the curve intersects the axes.
OCR MEI C1 2013 January Q12
10 marks Moderate -0.3
12 You are given that \(\mathrm { f } ( x ) = x ^ { 4 } - x ^ { 3 } + x ^ { 2 } + 9 x - 10\).
  1. Show that \(x = 1\) is a root of \(\mathrm { f } ( x ) = 0\) and hence express \(\mathrm { f } ( x )\) as a product of a linear factor and a cubic factor.
  2. Hence or otherwise find another root of \(\mathrm { f } ( x ) = 0\).
  3. Factorise \(\mathrm { f } ( x )\), showing that it has only two linear factors. Show also that \(\mathrm { f } ( x ) = 0\) has only two real roots. \section*{THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE.}
OCR MEI C1 2009 June Q1
4 marks Easy -1.2
1 A line has gradient - 4 and passes through the point (2,6). Find the coordinates of its points of intersection with the axes.
OCR MEI C1 2009 June Q2
3 marks Easy -1.8
2 Make \(a\) the subject of the formula \(s = u t + \frac { 1 } { 2 } a t ^ { 2 }\).
OCR MEI C1 2009 June Q3
3 marks Moderate -0.8
3 When \(x ^ { 3 } - k x + 4\) is divided by \(x - 3\), the remainder is 1 . Use the remainder theorem to find the value of \(k\).
OCR MEI C1 2009 June Q4
2 marks Easy -1.2
4 Solve the inequality \(x ( x - 6 ) > 0\).
OCR MEI C1 2009 June Q5
4 marks Easy -1.3
5
  1. Calculate \({ } ^ { 5 } \mathrm { C } _ { 3 }\).
  2. Find the coefficient of \(x ^ { 3 }\) in the expansion of \(( 1 + 2 x ) ^ { 5 }\).
OCR MEI C1 2009 June Q6
3 marks Moderate -0.8
6 Prove that, when \(n\) is an integer, \(n ^ { 3 } - n\) is always even.
OCR MEI C1 2009 June Q7
3 marks Easy -1.8
7 Find the value of each of the following.
  1. \(5 ^ { 2 } \times 5 ^ { - 2 }\)
  2. \(100 ^ { \frac { 3 } { 2 } }\)
OCR MEI C1 2009 June Q8
5 marks Easy -1.3
8
  1. Simplify \(\frac { \sqrt { 48 } } { 2 \sqrt { 27 } }\).
  2. Expand and simplify \(( 5 - 3 \sqrt { 2 } ) ^ { 2 }\).
OCR MEI C1 2009 June Q11
12 marks Moderate -0.3
11 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1209192c-655e-439d-be50-8747dbbb7672-3_444_846_351_648} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure} Fig. 11 shows the line joining the points \(\mathrm { A } ( 0,3 )\) and \(\mathrm { B } ( 6,1 )\).
  1. Find the equation of the line perpendicular to AB that passes through the origin, O .
  2. Find the coordinates of the point where this perpendicular meets AB .
  3. Show that the perpendicular distance of AB from the origin is \(\frac { 9 \sqrt { 10 } } { 10 }\).
  4. Find the length of AB , expressing your answer in the form \(a \sqrt { 10 }\).
  5. Find the area of triangle OAB .
OCR MEI C1 2009 June Q12
13 marks Moderate -0.3
12
  1. You are given that \(\mathrm { f } ( x ) = ( x + 1 ) ( x - 2 ) ( x - 4 )\).
    (A) Show that \(\mathrm { f } ( x ) = x ^ { 3 } - 5 x ^ { 2 } + 2 x + 8\).
    (B) Sketch the graph of \(y = \mathrm { f } ( x )\).
    (C) The graph of \(y = \mathrm { f } ( x )\) is translated by \(\binom { 3 } { 0 }\). State an equation for the resulting graph. You need not simplify your answer.
    Find the coordinates of the point at which the resulting graph crosses the \(y\)-axis.
  2. Show that 3 is a root of \(x ^ { 3 } - 5 x ^ { 2 } + 2 x + 8 = - 4\). Hence solve this equation completely, giving the other roots in surd form.
OCR MEI C1 2009 June Q13
11 marks Moderate -0.3
13 A circle has equation \(( x - 5 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 20\).
  1. State the coordinates of the centre and the radius of this circle.
  2. State, with a reason, whether or not this circle intersects the \(y\)-axis.
  3. Find the equation of the line parallel to the line \(y = 2 x\) that passes through the centre of the circle.
  4. Show that the line \(y = 2 x + 2\) is a tangent to the circle. State the coordinates of the point of contact.
OCR MEI C1 2010 June Q1
3 marks Easy -1.2
1 Find the equation of the line which is parallel to \(y = 3 x + 1\) and which passes through the point with coordinates \(( 4,5 )\).
OCR MEI C1 2010 June Q2
5 marks Easy -1.8
2
  1. Simplify \(\left( 5 a ^ { 2 } b \right) ^ { 3 } \times 2 b ^ { 4 }\).
  2. Evaluate \(\left( \frac { 1 } { 16 } \right) ^ { - 1 }\).
  3. Evaluate \(( 16 ) ^ { \frac { 3 } { 2 } }\).
OCR MEI C1 2010 June Q4
5 marks Easy -1.2
4 Solve the following inequalities.
  1. \(2 ( 1 - x ) > 6 x + 5\)
  2. \(( 2 x - 1 ) ( x + 4 ) < 0\)
OCR MEI C1 2010 June Q5
5 marks Easy -1.2
5
  1. Express \(\sqrt { 48 } + \sqrt { 27 }\) in the form \(a \sqrt { 3 }\).
  2. Simplify \(\frac { 5 \sqrt { 2 } } { 3 - \sqrt { 2 } }\). Give your answer in the form \(\frac { b + c \sqrt { 2 } } { d }\).
OCR MEI C1 2010 June Q6
5 marks Moderate -0.3
6 You are given that
  • the coefficient of \(x ^ { 3 }\) in the expansion of \(\left( 5 + 2 x ^ { 2 } \right) \left( x ^ { 3 } + k x + m \right)\) is 29 ,
  • when \(x ^ { 3 } + k x + m\) is divided by ( \(x - 3\) ), the remainder is 59 .
Find the values of \(k\) and \(m\).
OCR MEI C1 2010 June Q7
4 marks Easy -1.8
7 Expand \(\left( 1 + \frac { 1 } { 2 } x \right) ^ { 4 }\), simplifying the coefficients.
OCR MEI C1 2010 June Q8
4 marks Easy -1.2
8 Express \(5 x ^ { 2 } + 20 x + 6\) in the form \(a ( x + b ) ^ { 2 } + c\).
OCR MEI C1 2010 June Q9
2 marks Easy -1.8
9 Show that the following statement is false. $$x - 5 = 0 \Leftrightarrow x ^ { 2 } = 25$$
OCR MEI C1 2010 June Q10
12 marks Moderate -0.3
10
  1. Solve, by factorising, the equation \(2 x ^ { 2 } - x - 3 = 0\).
  2. Sketch the graph of \(y = 2 x ^ { 2 } - x - 3\).
  3. Show that the equation \(x ^ { 2 } - 5 x + 10 = 0\) has no real roots.
  4. Find the \(x\)-coordinates of the points of intersection of the graphs of \(y = 2 x ^ { 2 } - x - 3\) and \(y = x ^ { 2 } - 5 x + 10\). Give your answer in the form \(a \pm \sqrt { b }\).