Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q12
3 marks Easy -1.2
12 Solve the equation \(| 3 x + 2 | = 1\).
OCR MEI C3 Q1
4 marks Moderate -0.8
1 Solve each of the following equations, giving your answers in exact form.
  1. \(6 \arcsin x - \pi = 0\).
  2. \(\arcsin x = \arccos x\).
OCR MEI C3 Q2
4 marks Moderate -0.8
2 The curves in parts (i) and (ii) have equations of the form \(y = a + b \sin c x\), where \(a , b\) and \(c\) are constants. For each curve, find the values of \(a , b\) and \(c\).

  1. \includegraphics[max width=\textwidth, alt={}, center]{11877196-83d9-4283-9eef-e617bea50c63-1_449_681_834_408}

  2. \includegraphics[max width=\textwidth, alt={}, center]{11877196-83d9-4283-9eef-e617bea50c63-1_376_681_1344_408}
OCR MEI C3 Q3
3 marks Standard +0.3
3 Given that \(\arcsin x = \arccos y\), prove that \(x ^ { 2 } + y ^ { 2 } = 1\). [Hint: let \(\arcsin x = \theta\).]
OCR MEI C3 Q4
8 marks Moderate -0.8
4
  1. State the period of the function \(\mathrm { f } ( x ) = 1 + \cos 2 x\), where \(x\) is in degrees.
  2. State a sequence of two geometrical transformations which maps the curve \(y = \cos x\) onto the curve \(y = \mathrm { f } ( x )\).
  3. Sketch the graph of \(y = \mathrm { f } ( x )\) for \(- 180 ^ { \circ } < x < 180 ^ { \circ }\).
OCR MEI C3 Q5
8 marks Moderate -0.3
5 Fig. 7 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 1 + 2 \arctan x , x \in \mathbb { R }\). The scales on the \(x\) - and \(y\)-axes are the same. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{11877196-83d9-4283-9eef-e617bea50c63-2_855_838_1028_688} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the range of f , giving your answer in terms of \(\pi\).
  2. Find \(\mathrm { f } ^ { - 1 } ( x )\), and add a sketch of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) to the copy of Fig. 7.
OCR MEI C3 Q6
17 marks Standard +0.8
6 Fig. 8 shows part of the curve \(y = x \cos 3 x\). The curve crosses the \(x\)-axis at \(\mathrm { O } , \mathrm { P }\) and Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{11877196-83d9-4283-9eef-e617bea50c63-3_553_1178_622_529} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of P and Q .
  2. Find the exact gradient of the curve at the point P . Show also that the turning points of the curve occur when \(x \tan 3 x = \frac { 1 } { 3 }\).
  3. Find the area of the region enclosed by the curve and the \(x\)-axis between O and P , giving your answer in exact form.
OCR MEI C3 Q7
3 marks Moderate -0.8
7 Sketch the curve \(y = 2 \arccos x\) for \(- 1 \leqslant x \leqslant 1\).
OCR MEI C3 Q8
8 marks Standard +0.3
8 Fig. 6 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \arctan x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{11877196-83d9-4283-9eef-e617bea50c63-4_379_722_467_715} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find the range of the function \(\mathrm { f } ( x )\), giving your answer in terms of \(\pi\).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). Find the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the origin.
  3. Hence write down the gradient of \(y = \frac { 1 } { 2 } \arctan x\) at the origin.
OCR MEI C3 Q9
3 marks Easy -1.2
9 Given that \(\arcsin x = \frac { 1 } { 6 } \pi\), find \(x\). Find \(\arccos x\) in terms of \(\pi\).
OCR MEI C3 Q1
5 marks Standard +0.3
1 Find the exact value of \(\int ^ { 2 } x ^ { 3 } \ln x \mathrm {~d} x\).
OCR MEI C3 Q2
18 marks Standard +0.3
2 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { x } { \sqrt { 2 + x ^ { 2 } } }\) \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93ee09be-f014-4dd7-a8da-8646837b17a5-1_471_674_761_719} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show algebraically that \(\mathrm { f } ( x )\) is an odd function. Interpret this result geometrically.
  2. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 2 } { \left( 2 + x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }\). Hence find the exact gradient of the curve at the origin.
  3. Find the exact area of the region bounded by the curve, the \(x\)-axis and the line \(x = 1\).
  4. \(( A )\) Show that if \(y = \frac { x } { \sqrt { 2 + x ^ { 2 } } }\), then \(\frac { 1 } { y ^ { 2 } } = \frac { 2 } { x ^ { 2 } } + 1\).
    (B) Differentiate \(\frac { 1 } { y ^ { 2 } } = \frac { 2 } { x ^ { 2 } } + 1\) implicitly to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 y ^ { 3 } } { x ^ { 3 } }\). Explain why this expression cannot be used to find the gradient of the curve at the origin.
OCR MEI C3 Q3
5 marks Standard +0.3
3 Evaluate \(\int _ { 0 } ^ { 3 } x ( x + 1 ) ^ { - \frac { 1 } { 2 } } \mathrm {~d} x\), giving your answer as an exact fraction.
OCR MEI C3 Q4
5 marks Standard +0.3
4 Show that \(\int _ { 0 } ^ { \frac { \pi } { 2 } } x \cos \frac { 1 } { 2 } x \mathrm {~d} x = \frac { \sqrt { 2 } } { 2 } \pi + 2 \sqrt { 2 } - 4\).
[0pt] [5]
OCR MEI C3 Q5
18 marks Standard +0.3
5 Fig. 8 shows the curve \(y = \frac { x } { \sqrt { x - 2 } }\), together with the lines \(y = x\) and \(x = 11\). The curve meets these lines at P and Q respectively. R is the point \(( 11,11 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93ee09be-f014-4dd7-a8da-8646837b17a5-2_606_732_867_710} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the \(x\)-coordinate of P is 3 .
  2. Show that, for the curve, \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 4 } { 2 ( x - 2 ) ^ { \frac { 3 } { 2 } } }\). Hence find the gradient of the curve at P . Use the result to show that the curve is not symmetrical about \(y = x\).
  3. Using the substitution \(u = x - 2\), show that \(\int _ { 3 } ^ { 11 } \frac { x } { \sqrt { x - 2 } } \mathrm {~d} x = 25 \frac { 1 } { 3 }\). Hence find the area of the region PQR bounded by the curve and the lines \(y = x\) and \(x = 11\).
OCR MEI C3 Q1
18 marks Standard +0.3
1 Fig. 8 shows a sketch of part of the curve \(y = x \sin 2 x\), where \(x\) is in radians.
The curve crosses the \(x\)-axis at the point P . The tangent to the curve at P crosses the \(y\)-axis at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{35646966-3747-4f1d-bf94-60e9e3130afe-1_706_920_489_606} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Hence show that the \(x\)-coordinates of the turning points of the curve satisfy the equation \(\tan 2 x + 2 x = 0\).
  2. Find, in terms of \(\pi\), the \(x\)-coordinate of the point P . Show that the tangent PQ has equation \(2 \pi x + 2 y = \pi ^ { 2 }\).
    Find the exact coordinates of Q.
  3. Show that the exact value of the area shaded in Fig. 8 is \(\frac { 1 } { 8 } \pi \left( \pi ^ { 2 } - 2 \right)\).
OCR MEI C3 Q2
18 marks Standard +0.8
2
  1. Use the substitution \(u = 1 + x\) to show that $$\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x = \int _ { a } ^ { b } \left( u ^ { 2 } - 3 u + 3 - \frac { 1 } { u } \right) \mathrm { d } u$$ where \(a\) and \(b\) are to be found.
    Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x\), giving your answer in exact form. Fig. 8 shows the curve \(y = x ^ { 2 } \ln ( 1 + x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{35646966-3747-4f1d-bf94-60e9e3130afe-2_829_806_944_706} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Verify that the origin is a stationary point of the curve.
  3. Using integration by parts, and the result of part (i), find the exact area enclosed by the curve \(y = x ^ { 2 } \ln ( 1 + x )\), the \(x\)-axis and the line \(x = 1\).
OCR MEI C3 Q3
8 marks Standard +0.3
3
  1. Differentiate \(\frac { \ln x } { x ^ { 2 } }\), simplifying your answer.
  2. Using integration by parts, show that \(\int \frac { \ln x } { x ^ { 2 } } \mathrm {~d} x = - \frac { 1 } { x } ( 1 + \ln x ) + c\).
OCR MEI C3 Q4
8 marks Moderate -0.3
4 Evaluate the following integrals, giving your answers in exact form. \begin{displayquote}
  1. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x ^ { 2 } + 1 } \mathrm {~d} x\)
  2. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x + 1 } \mathrm {~d} x\) \end{displayquote}
OCR MEI C3 Q2
17 marks Standard +0.3
2 Fig. 8 shows the curve \(y = 3 \ln x + x - x ^ { 2 }\).
The curve crosses the \(x\)-axis at P and Q , and has a turning point at R . The \(x\)-coordinate of Q is approximately 2.05 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{72893fd5-bc8e-433b-8358-f7979b2da636-2_717_830_606_693} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the coordinates of P are \(( 1,0 )\).
  2. Find the coordinates of R , giving the \(y\)-coordinate correct to 3 significant figures. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), and use this to verify that R is a maximum point.
  3. Find \(\int \ln x \mathrm {~d} x\). Hence calculate the area of the region enclosed by the curve and the \(x\)-axis between P and Q , giving your answer to 2 significant figures.
OCR MEI C3 Q3
19 marks Standard +0.3
3 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { 2 x } } { 1 + \mathrm { e } ^ { 2 x } }\). The curve crosses the \(y\)-axis at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{72893fd5-bc8e-433b-8358-f7979b2da636-3_594_1230_514_494} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of P .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), simplifying your answer. Hence calculate the gradient of the curve at P .
  3. Show that the area of the region enclosed by \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\) is \(\frac { 1 } { 2 } \ln \left( \frac { 1 + \mathrm { e } ^ { 2 } } { 2 } \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \left( \frac { \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } \right)\).
  4. Prove algebraically that \(\mathrm { g } ( x )\) is an odd function. Interpret this result graphically.
  5. (A) Show that \(\mathrm { g } ( x ) + \frac { 1 } { 2 } = \mathrm { f } ( x )\).
    (B) Describe the transformation which maps the curve \(y = \mathrm { g } ( x )\) onto the curve \(y = \mathrm { f } ( x )\).
    (C) What can you conclude about the symmetry of the curve \(y = \mathrm { f } ( x )\) ?
OCR MEI C3 Q1
5 marks Moderate -0.3
1 Find the exact value of \(\int _ { 0 } ^ { 2 } \sqrt { 1 + 4 x } \mathrm {~d} x\), showing your working.
OCR MEI C3 Q2
23 marks Standard +0.3
2 Fig. 8 shows the line \(y = x\) and parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where $$\mathrm { f } ( x ) = \mathrm { e } ^ { x - 1 } , \quad \mathrm {~g} ( x ) = 1 + \ln x$$ The curves intersect the axes at the points A and B , as shown. The curves and the line \(y = x\) meet at the point C . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a55b82e6-3fcb-4283-bd36-06a17a9a7536-1_804_888_1061_662} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of A and B . Verify that the coordinates of C are \(( 1,1 )\).
  2. Prove algebraically that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
  3. Evaluate \(\int _ { 0 } ^ { 1 } \mathrm { f } ( x ) \mathrm { d } x\), giving your answer in terms of e .
  4. Use integration by parts to find \(\int \ln x \mathrm {~d} x\). Hence show that \(\int _ { \mathrm { e } ^ { - 1 } } ^ { 1 } \mathrm {~g} ( x ) \mathrm { d } x = \frac { 1 } { \mathrm { e } }\).
  5. Find the area of the region enclosed by the lines OA and OB , and the arcs AC and BC .
OCR MEI C3 Q4
4 marks Moderate -0.5
4 Find \(\int x \mathrm { e } ^ { 3 x } \mathrm {~d} x\).
OCR MEI C3 Q5
4 marks Standard +0.3
5 Show that \(\int _ { 1 } ^ { 4 } \frac { x } { x ^ { 2 } + 2 } \mathrm {~d} x = \frac { 1 } { 2 } \ln 6\).