Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q7
3 marks Moderate -0.5
7 Given that \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \ln ( x - 1 )\) and \(\mathrm { g } ( x ) = 1 + \mathrm { e } ^ { 2 x }\), show that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
OCR MEI C3 Q8
3 marks Moderate -0.8
8 Sketch the curve \(y = 2 \arccos x\) for \(- 1 \leqslant x \leqslant 1\).
OCR MEI C3 Q1
5 marks Standard +0.3
1 Given that \(\mathrm { f } ( x ) = \frac { x + 1 } { x - 1 }\), show that \(\mathrm { ff } ( x ) = x\).
Hence write down the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). What can you deduce about the symmetry of the curve \(y = \mathrm { f } ( x ) ?\)
OCR MEI C3 Q2
5 marks Moderate -0.8
2 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined for all real numbers \(x\) by $$\mathrm { f } ( x ) = x ^ { 2 } , \quad \mathrm {~g} ( x ) = x - 2 .$$
  1. Find the composite functions \(\mathrm { fg } ( x )\) and \(\mathrm { gf } ( x )\).
  2. Sketch the curves \(y = \mathrm { f } ( x ) , y = \mathrm { fg } ( x )\) and \(y = \mathrm { gf } ( x )\), indicating clearly which is which.
OCR MEI C3 Q3
3 marks Moderate -0.8
3 Given that \(\mathrm { f } ( x ) = 1 - x\) and \(\mathrm { g } ( x ) = | x |\), write down the composite function \(\mathrm { gf } ( x )\). On separate diagrams, sketch the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { gf } ( x )\).
OCR MEI C3 Q4
7 marks Moderate -0.3
4 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 1 + 2 \sin x\) for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  1. Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arcsin \left( \frac { x \mathrm { r } } { 2 } \right)\) and state the domain of this function. Fig. 6 shows a sketch of the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d4aa92fb-d21b-4387-b711-b0a6b0d57baa-2_499_562_779_785} \captionsetup{labelformat=empty} \caption{Fig. 6}
    \end{figure}
  2. Write down the coordinates of the points \(\mathrm { A } , \mathrm { B }\) and C .
OCR MEI C3 Q5
3 marks Easy -1.2
5 Given that \(\arcsin x = \frac { 1 } { 6 } \pi\), find \(x\). Find \(\arccos x\) in terms of \(\pi\).
OCR MEI C3 Q6
3 marks Moderate -0.8
6 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined for the domain \(x > 0\) as follows: $$\mathrm { f } ( x ) = \ln x , \quad \mathrm {~g} ( x ) = x ^ { 3 } .$$ Express the composite function \(\mathrm { fg } ( x )\) in terms of \(\ln x\).
State the transformation which maps the curve \(y = \mathrm { f } ( x )\) onto the curve \(y = \mathrm { fg } ( x )\).
OCR MEI C3 Q7
19 marks Standard +0.3
7 Fig. 9 shows the line \(y = x\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } - 1 \right)\). The line and the curve intersect at the origin and at the point \(\mathrm { P } ( a , a )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d4aa92fb-d21b-4387-b711-b0a6b0d57baa-3_694_886_430_604} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that \(\mathrm { e } ^ { a } = 1 + 2 a\).
  2. Show that the area of the region enclosed by the curve, the \(x\)-axis and the line \(x = a\) is \(\frac { 1 } { 2 } a\). Hence find, in terms of \(a\), the area enclosed by the curve and the line \(y = x\).
  3. Show that the inverse function of \(\mathrm { f } ( x )\) is \(\mathrm { g } ( x )\), where \(\mathrm { g } ( x ) = \ln ( 1 + 2 x )\). Add a sketch of \(y = \mathrm { g } ( x )\) to the copy of Fig. 9.
  4. Find the derivatives of \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\). Hence verify that \(\mathrm { g } ^ { \prime } ( a ) = \frac { 1 } { \mathrm { f } ^ { \prime } ( a ) }\). Give a geometrical interpretation of this result.
OCR MEI C3 Q8
8 marks Moderate -0.3
8 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 1 - 2 \sin x\) for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\). Fig. 3 shows the curve \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d4aa92fb-d21b-4387-b711-b0a6b0d57baa-4_736_809_419_653} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Write down the range of the function \(\mathrm { f } ( x )\).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\).
  3. Find \(\mathrm { f } ^ { \prime } ( 0 )\). Hence write down the gradient of \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 1,0 )\).
OCR MEI C3 Q1
18 marks Challenging +1.2
1 Fig. 9 shows the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\). The function \(y = \mathrm { f } ( x )\) is given by $$f ( x ) = \ln \left( \frac { 2 x } { 1 + x } \right) , x > 0$$ The curve \(y = \mathrm { f } ( x )\) crosses the \(x\)-axis at P , and the line \(x = 2\) at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1d12cd0d-07b0-429c-ad3b-e3bccb0fae18-1_555_641_573_748} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Verify that the \(x\)-coordinate of P is 1 . Find the exact \(y\)-coordinate of Q .
  2. Find the gradient of the curve at P . [Hint: use \(\ln \frac { a } { b } = \ln a - \ln b\).] The function \(\mathrm { g } ( x )\) is given by $$\mathrm { g } ( x ) = \frac { \mathrm { e } ^ { x } } { 2 - \mathrm { e } ^ { x } } , \quad x < \ln 2 .$$ The curve \(y = \mathrm { g } ( x )\) crosses the \(y\)-axis at the point R .
  3. Show that \(\mathrm { g } ( x )\) is the inverse function of \(\mathrm { f } ( x )\). Write down the gradient of \(y = \mathrm { g } ( x )\) at R.
  4. Show, using the substitution \(u = 2 - \mathrm { e } ^ { x }\) or otherwise, that \(\int _ { 0 } ^ { \ln \frac { 4 } { 3 } } \mathrm {~g} ( x ) \mathrm { d } x = \ln \frac { 3 } { 2 }\). Using this result, show that the exact area of the shaded region shown in Fig. 9 is \(\ln \frac { 32 } { 27 }\).
    [0pt] [Hint: consider its reflection in \(y = x\).]
OCR MEI C3 Q2
18 marks Standard +0.3
2 Fig. 8 shows the line \(y = x\) and parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where $$\mathrm { f } ( x ) = \mathrm { e } ^ { x - 1 } , \quad \mathrm {~g} ( x ) = 1 + \ln x$$ The curves intersect the axes at the points A and B, as shown. The curves and the line \(y = x\) meet at the point C . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1d12cd0d-07b0-429c-ad3b-e3bccb0fae18-2_811_893_609_655} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of A and B . Verify that the coordinates of C are \(( 1,1 )\).
  2. Prove algebraically that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
  3. Evaluate \(\int _ { 0 } ^ { 1 } \mathrm { f } ( x ) \mathrm { d } x\), giving your answer in terms of e .
  4. Use integration by parts to find \(\int \ln x \mathrm {~d} x\). Hence show that \(\int _ { \mathrm { e } ^ { - 1 } } ^ { 1 } \mathrm {~g} ( x ) \mathrm { d } x = \frac { 1 } { \mathrm { e } }\).
  5. Find the area of the region enclosed by the lines OA and OB , and the arcs AC and BC .
OCR MEI C3 Q3
17 marks Moderate -0.3
3 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 1 + \sin 2 x\) for \(- \frac { 1 } { 4 } \pi \leqslant x \leqslant \frac { 1 } { 4 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1d12cd0d-07b0-429c-ad3b-e3bccb0fae18-3_577_815_392_719} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. State a sequence of two transformations that would map part of the curve \(y = \sin x\) onto the curve \(y = \mathrm { f } ( x )\).
  2. Find the area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis and the line \(x = \frac { 1 } { 4 } \pi\).
  3. Find the gradient of the curve \(y = \mathrm { f } ( x )\) at the point ( 0,1 ). Hence write down the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 1,0 )\).
  4. State the domain of \(\mathrm { f } ^ { - 1 } ( x )\). Add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.
  5. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
OCR MEI C3 Q4
18 marks Standard +0.8
4 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 1 + \cos x }\), for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
P is the point on the curve with \(x\)-coordinate \(\frac { 1 } { 3 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1d12cd0d-07b0-429c-ad3b-e3bccb0fae18-4_820_815_551_715} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the \(y\)-coordinate of P .
  2. Find \(\mathrm { f } ^ { \prime } ( x )\). Hence find the gradient of the curve at the point P .
  3. Show that the derivative of \(\frac { \sin x } { 1 + \cos x }\) is \(\frac { 1 } { 1 + \cos x }\). Hence find the exact area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 3 } \pi\).
  4. Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arccos \left( \frac { 1 } { x } - 1 \right)\). State the domain of this inverse function, and add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.
OCR MEI C3 Q1
4 marks Standard +0.3
1 Solve the equation \(| 3 - 2 x | = 4 | x |\).
OCR MEI C3 Q2
2 marks Easy -1.2
2 Express \(1 < x < 3\) im th \(\quad | x - a | < b\), where \(a\) and \(b\) are to be determined.
OCR MEI C3 Q3
6 marks Moderate -0.3
3 Fig. 1 shows the graphs of \(y = | x |\) and \(y = a | x + b |\), where \(a\) and \(b\) are constants. The intercepts of \(y = a | x + b |\) with the \(x\)-and \(y\)-axes are \(( - 1,0 )\) and \(\left( 0 , \frac { 1 } { 2 } \right)\) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{125b76c1-5ab3-4645-a3c4-cf167a04f453-1_617_950_909_582} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure}
  1. Find \(a\) and \(b\).
  2. Find the coordinates of the two points of intersection of the graphs.
OCR MEI C3 Q4
4 marks Easy -1.2
4 Solve the inequality \(| 2 x + 1 | \geqslant 4\).
OCR MEI C3 Q5
4 marks Moderate -0.5
5 Solve the equation \(| 2 x - 1 | = | x |\).
[0pt] [4]
OCR MEI C3 Q6
4 marks Moderate -0.8
6 Given that \(\mathrm { f } ( x ) = | x |\) and \(\mathrm { g } ( x ) = x + 1\), sketch the graphs of the composite functions \(y = \mathrm { fg } ( x )\) and \(y = \operatorname { gf } ( x )\), indicating clearly which is which.
OCR MEI C3 Q7
3 marks Easy -1.2
7 Solve the inequality \(| x - 1 | < 3\).
OCR MEI C3 Q8
3 marks Easy -1.3
8 Fig. 4 shows a sketch of the graph of \(y = 2 | x - 1 |\). It meets the \(x\) - and \(y\)-axes at ( \(a , 0\) ) and ( \(0 , b\) ) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{125b76c1-5ab3-4645-a3c4-cf167a04f453-2_478_546_1299_834} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find the values of \(a\) and \(b\).
OCR MEI C3 Q9
4 marks Easy -1.2
9 Solve the inequality \(| 2 x - 1 | \leqslant 3\).
OCR MEI C3 Q10
5 marks Moderate -0.8
10 Fig. 1 shows the graphs of \(y = | x |\) and \(y = | x - 2 | + 1\). The point P is the minimum point of \(y = | x - 2 | + 1\), and Q is the point of intersection of the two graphs. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{125b76c1-5ab3-4645-a3c4-cf167a04f453-3_491_833_503_657} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure}
  1. Write down the coordinates of P .
  2. Verify that the \(y\)-coordinate of Q is \(1 \frac { 1 } { 2 }\).
OCR MEI C3 Q11
3 marks Moderate -0.8
11 Solve the equation \(| 3 x - 2 | = x\).